An approach to the ordering of one-dimensional quadratic maps

被引:15
作者
Pastor, G
Romera, M
Montoya, F
机构
[1] Instituto de Física Aplicada, Consejo Sup. de Invest. Cie., 28006 Madrid
关键词
D O I
10.1016/0960-0779(95)00071-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work the antenna of the Mandelbrot set is used to order hyperbolic components of one-dimensional quadratic maps by means of graphic and experimental tools. Successive partitions of the antenna have been made to classify hyperbolic components. All the separators used in partitions are Misiurewicz points and the pre-period and period of these points have been determined.
引用
收藏
页码:565 / 584
页数:20
相关论文
共 24 条
[1]  
Branner B., 1989, Chaos and Fractals: The Mathematics Behind the Computer Graphics (Proceedings of Symposia in Applied Mathematics, 39), VVolume 39, P75, DOI 10.1090/psapm/039
[2]  
CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V2
[3]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[4]  
DOUADY A, 1984, PUBLICATIONS MATH DO, V8402
[5]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[6]  
Hale J, 1991, DYNAMICS BIFURCATION
[7]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[8]   COUNTING HYPERBOLIC COMPONENTS OF THE MANDELBROT SET [J].
LUTZKY, M .
PHYSICS LETTERS A, 1993, 177 (4-5) :338-340
[9]  
Mandelbrot B., 1980, ANN NY ACAD SCI, V357, P249, DOI 10.1111/j.1749-6632.1980.tb29690.x
[10]  
MANDELBROT BB, 1983, PHYSICA D, V7, P224, DOI 10.1016/0167-2789(83)90128-8