Dynamical Digital Silicon Neurons

被引:43
作者
Cassidy, Andrew [1 ]
Andreou, Andreas G. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
来源
2008 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE - INTELLIGENT BIOMEDICAL SYSTEMS (BIOCAS) | 2008年
关键词
D O I
10.1109/BIOCAS.2008.4696931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an array of dynamical digital silicon neurons implementing the Izhikevich neuron model [1]. The FPGA based array consists of 32 physical neurons, each time multiplexing the state of 8 virtual neurons, for a total of 256 independent neurons. The neural array operates at 5,000 times faster than real time, performing over 20.48 GOPS (Giga Operations Per Second). It is intended for neural simulation acceleration, neural prostheses, and neuromorphic systems,
引用
收藏
页码:289 / 292
页数:4
相关论文
共 5 条
[1]   FPGA based silicon spiking neural array [J].
Cassidy, Andrew ;
Denham, Susan ;
Kanold, Patrick ;
Andreou, Andreas .
2007 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE, 2007, :75-+
[2]  
Ekoon JHBW, 2006, IEEE I C ELECT CIRC, P1344
[3]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[4]   Which model to use for cortical spiking neurons? [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05) :1063-1070
[5]   Neuronal dynamics on FPGA: Izhikevich's model [J].
La Rosa, M ;
Caruso, E ;
Fortuna, L ;
Frasca, M ;
Occhipinti, L ;
Rivoli, F .
Bioengineered and Bioinspired Systems II, 2005, 5839 :87-94