Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells

被引:205
作者
Kavan, Ladislav [1 ]
Tetreault, Nicolas [2 ]
Moehl, Thomas [2 ]
Graetzel, Michael [2 ]
机构
[1] Acad Sci Czech Republ, Vvi, J Heyrovsky Inst Phys Chem, CZ-18223 Prague 8, Czech Republic
[2] Swiss Fed Inst Technol, Inst Chem Sci & Engn, Lab Photon & Interfaces, Stn 6, CH-1015 Lausanne, Switzerland
关键词
ANODIC OXIDATIVE HYDROLYSIS; MOTT-SCHOTTKY ANALYSIS; TITANIUM-DIOXIDE; CHARGE-TRANSFER; NANOCRYSTALLINE TIO2; DEPOSITED TIO2; THIN-FILMS; ANATASE; PERFORMANCE; RUTILE;
D O I
10.1021/jp4103614
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the holeconducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 degrees C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination.
引用
收藏
页码:16408 / 16418
页数:11
相关论文
共 54 条
[1]   CHARGE-TRANSFER AT PARTIALLY BLOCKED SURFACES - A MODEL FOR THE CASE OF MICROSCOPIC ACTIVE AND INACTIVE SITES [J].
AMATORE, C ;
SAVEANT, JM ;
TESSIER, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 147 (1-2) :39-51
[2]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[3]   High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J].
Bai, Yu ;
Cao, Yiming ;
Zhang, Jing ;
Wang, Mingkui ;
Li, Renzhi ;
Wang, Peng ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
NATURE MATERIALS, 2008, 7 (08) :626-630
[4]   Electrochemical Impedance Spectroscopy of Porous TiO2 for Photocatalytic Applications [J].
Baram, Nir ;
Ein-Eli, Yair .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (21) :9781-9790
[5]   (Photo) electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials [J].
Beranek, Radim .
ADVANCES IN PHYSICAL CHEMISTRY, 2011,
[6]   Charge transfer reductive doping of nanostructured TiO2 thin film's as a way to improve their photoelectrocatalytic performance [J].
Berger, Thomas ;
Lana-Villarreal, Teresa ;
Monllor-Satoca, Damian ;
Gomez, Roberto .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (11) :1713-1718
[7]   The Electrochemistry of Nanostructured Titanium Dioxide Electrodes [J].
Berger, Thomas ;
Monllor-Satoca, Damian ;
Jankulovska, Milena ;
Lana-Villarreal, Teresa ;
Gomez, Roberto .
CHEMPHYSCHEM, 2012, 13 (12) :2824-2875
[8]   Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition [J].
Boschloo, GK ;
Goossens, A ;
Schoonman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1311-1317
[9]   An ultrathin TiO2 blocking layer on Cd stannate as highly efficient front contact for dye-sensitized solar cells [J].
Braga, Antonio ;
Baratto, Camilla ;
Colombi, Paolo ;
Bontempi, Elza ;
Salvinelli, Gabriele ;
Drera, Giovanni ;
Sangaletti, Luigi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16812-16818
[10]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+