Regulatory T cells in human autoimmune thyroid disease

被引:167
作者
Marazuela, Monica
Garcia-Lopez, Maria A.
Figueroa-Vega, Nicte
de la Fuente, Hortensia
Alvarado-Sanchez, Brenda
Monsivais-Urenda, Adriana
Sanchez-Madrid, Francisco
Gonzalez-Amaro, Roberto
机构
[1] Univ Autonoma San Luis Potosi, Fac Med, Dept Inmunol, San Luis Potosi 78210, SLP, Mexico
[2] Univ Autonoma Madrid, Hosp Univ Princesa, Serv Endocrinol, Madrid 28006, Spain
[3] Univ Autonoma Madrid, Hosp Univ Princesa, Serv Inmunol, Madrid 28006, Spain
关键词
D O I
10.1210/jc.2005-2337
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context: T regulatory cells have a key role in the pathogenesis of autoimmune diseases in different animal models. However, less information is available regarding these cells in human autoimmune thyroid diseases (AITD). Objective: The objective of the study was to analyze different regulatory T cell subsets in patients with AITD. Design: We studied by flow cytometry and immunohistochemistry different T regulatory cell subsets in peripheral blood mononuclear cells (PBMCs) and thyroid cell infiltrates from 20 patients with AITD. In addition, the function of T-REG lymphocytes was assessed by cell proliferation assays. Finally, TGF-beta mRNA in thyroid tissue and its in vitro synthesis by thyroid mononuclear cells (TMCs) was determined by RNase protection assay and quantitative PCR. Results: PBMCs from AITD patients showed an increased percent of CD4+ lymphocytes expressing glucocorticoid-induced TNF receptor (GITR), Foxp3, IL-10, TGF-beta, and CD69 as well as CD69+CD25(bright), CD69+TGF-beta, and CD69+IL-10+ cells, compared with controls. TMCs from these patients showed an increased proportion of CD4+GITR+, CD4+CD69+, and CD69+ cells expressing CD25(bright), GITR, and Foxp3, compared with autologous PBMCs. Furthermore, a prominent infiltration of thyroid tissue by CD69+, CD25+, and GITR+ cells, with moderate levels of Foxp3+ lymphocytes, was observed. The suppressive function of peripheral blood TREG cells was defective in AITD patients. Finally, increased levels of TGF-beta mRNA were found in thyroid tissue, and thyroid cell infiltrates synthesized in vitro significant levels of TGF-beta upon stimulation through CD69. Conclusions: Although T regulatory cells are abundant in inflamed thyroid tissue, they are apparently unable, in most cases, to downmodulate the autoimmune response and the tissue damage seen in AITD.
引用
收藏
页码:3639 / 3646
页数:8
相关论文
共 38 条
[1]   Diversity of regulatory CD4+ T cells controlling distinct organ-specific autoimmune diseases [J].
Alyanakian, MA ;
You, S ;
Damotte, D ;
Gouarin, C ;
Esling, A ;
Garcia, C ;
Havouis, S ;
Chatenoud, L ;
Bach, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15806-15811
[2]   Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J].
Asano, M ;
Toda, M ;
Sakaguchi, N ;
Sakaguchi, S .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :387-396
[3]   High incidence of spontaneous autoimmune thyroiditis in immunocompetent self-reactive human T cell receptor transgenic mice [J].
Badami, E ;
Maiuri, L ;
Quaratino, S .
JOURNAL OF AUTOIMMUNITY, 2005, 24 (02) :85-91
[4]  
Batteux F, 1999, EUR J IMMUNOL, V29, P958
[5]  
Braley-Mullen H, 1998, AM J PATHOL, V152, P1347
[6]   Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J].
Brunkow, ME ;
Jeffery, EW ;
Hjerrild, KA ;
Paeper, B ;
Clark, LB ;
Yasayko, SA ;
Wilkinson, JE ;
Galas, D ;
Ziegler, SF ;
Ramsdell, F .
NATURE GENETICS, 2001, 27 (01) :68-73
[7]   Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis [J].
Cao, D ;
Malmström, V ;
Baecher-Allan, C ;
Hafler, D ;
Klareskog, L ;
Trollmo, C .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2003, 33 (01) :215-223
[8]   Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy [J].
Ehrenstein, MR ;
Evans, JG ;
Singh, A ;
Moore, S ;
Warnes, G ;
Isenberg, DA ;
Mauri, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (03) :277-285
[9]   A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3 [J].
Fontenot, JD ;
Rudensky, AY .
NATURE IMMUNOLOGY, 2005, 6 (04) :331-337
[10]   Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis [J].
Gambineri, E ;
Torgerson, TR ;
Ochs, HD .
CURRENT OPINION IN RHEUMATOLOGY, 2003, 15 (04) :430-435