Network Analysis of World Subway Systems Using Updated Graph Theory

被引:113
作者
Derrible, Sybil [1 ]
Kennedy, Christopher [1 ]
机构
[1] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada
关键词
D O I
10.3141/2112-03
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper demonstrates that network topologies play a key role in attracting people to use public transit; ridership is not solely determined by cultural characteristics (North American versus European versus Asian) or city design (transit oriented versus automobile oriented). The analysis considers 19 subway systems worldwide: those in Toronto, Ontario, Canada; Montreal, Quebec, Canada; Chicago, Illinois; New York City; Washington, D.C.; San Francisco, California; Mexico City, Mexico; London; Paris; Lyon, France; Madrid, Spain; Berlin; Athens, Greece; Stockholm, Sweden; Moscow; Tokyo; Osaka, Japan; Seoul, South Korea; and Singapore. The relationship between ridership and network design was studied by using updated graph theory concepts. Ridership was computed as the annual number of boardings per capita. Network design was measured according to three major indicators. The first is a measure of transit coverage and is based on the total number of stations and land area. The second relates to the maximum number of transfers necessary to go from one station to another and is called directness. The third attempts to get an overall view of transfer possibilities to travel in the network to appreciate a sense of mobility; it is termed connectivity. Multiple-regression analysis showed a strong relationship between these three indicators and ridership, achieving a goodness of fit (adjusted R-2 value) of .725. The importance of network design is significant and should be considered in future public transportation projects.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 18 条
[1]  
Banister David., 2000, Transport Investment and Economic Development
[2]  
BON R, 1979, QUAL QUANT, V13, P307
[3]  
Brinkhoff T., CITYPOPULATION
[4]  
DERRIBLE S, 2008, 37 CSCE ANN C 2008 C
[5]   Compared analysis of metro networks supported by graph theory [J].
Gattuso, D ;
Miriello, E .
NETWORKS & SPATIAL ECONOMICS, 2005, 5 (04) :395-414
[6]  
*INT ASS PUBL TRAN, 2001, MILL CIT DAT SUST TR
[7]  
*INT ASS PUBL TRAN, 2006, MOB CIT DAT
[8]  
Kansky K.J., 1963, Structure of Transportation Networks: Relationships Between Network Geometry and Regional Characteristics
[9]  
KOZYREV VP, 1974, J MATH SCI, V2, P489
[10]  
Lam T. M., 1981, DMT084 U CAL I TRANS, V1