A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning

被引:213
作者
Duan, Bin
Yuan, Xiaoyan [1 ]
Zhu, Yi
Zhang, Yuanyuan
Li, Xiulan
Zhang, Yang
Yao, Kangde
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Hosp, Inst Orthoped, Tianjin 300211, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; poly(lactide-co-glycolide); chitosan; nanofibrous composite membrane; fibroblast;
D O I
10.1016/j.eurpolymj.2006.04.021
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Tissue engineering scaffolds produced by electrospinning feature a structural similarity to the natural extracellular matrix. In this study, poly(lactide-co-glycolide) (PLGA) and chitosan/poly(vinyl alcohol) (PVA) were simultaneously electrospun from two different syringes and mixed on the rotating drum to prepare the nanofibrous composite membrane. The composite membrane was crosslinked by glutaraldehyde vapor to maintain its mechanical properties and fiber morphology in wet stage. Morphology, shrinkage, absorption in phosphate buffered solution (PBS) and mechanical properties of the electrospun membranes were characterized. Fibroblast viability on electrospun membranes was discussed by MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay and cell morphology after 7 days of culture. Results indicated that the PBS absorption of the composite membranes, no matter crosslinked or not, was higher than the electrospun PLGA membrane due to the introduction of hydrophilic components, chitosan and PVA. After crosslinking, the composite membrane had a little shrinkage after incubating in PBS. The crosslinked composite membrane also showed moderate tensile properties. Cell culture suggested that electrospun PLGA-ehitosan/PVA membrane tended to promote fibroblast attachment and proliferation. It was assumed that the nanofibrous composite membrane of electrospun PLGA-chitosan/PVA could be potentially used for skin reconstruction. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2013 / 2022
页数:10
相关论文
共 36 条
[1]  
[Anonymous], BIOMATERIALS
[2]  
Badylak S. F., 2004, Clinical Techniques in Equine Practice, V3, P173, DOI 10.1053/j.ctep.2004.08.002
[3]   Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh [J].
Chen, GP ;
Sato, T ;
Ohgushi, H ;
Ushida, T ;
Tateishi, T ;
Tanaka, J .
BIOMATERIALS, 2005, 26 (15) :2559-2566
[4]   The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness [J].
Chen, GP ;
Sato, T ;
Ushida, T ;
Hirochika, R ;
Shirasaki, Y ;
Ochiai, N ;
Tateishi, T .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (04) :1170-1180
[5]   Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro [J].
Chuang, WY ;
Young, TH ;
Yao, CH ;
Chiu, WY .
BIOMATERIALS, 1999, 20 (16) :1479-1487
[6]   Reactions of cells to topography [J].
Curtis, ASG ;
Wilkinson, CD .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1998, 9 (12) :1313-1329
[7]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[8]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[9]   Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide) [J].
Duan, B ;
Dong, CH ;
Yuan, XY ;
Yao, KD .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2004, 15 (06) :797-811
[10]   Electrospinning and electrically forced jets. II. Applications [J].
Hohman, MM ;
Shin, M ;
Rutledge, G ;
Brenner, MP .
PHYSICS OF FLUIDS, 2001, 13 (08) :2221-2236