Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations

被引:61
作者
Bennett, Richard N.
Carvalho, Rosa
Mellon, Fred A.
Eagles, John
Rosa, Eduardo A. S.
机构
[1] UTAD, CECEA, Dept Fitotecnia & Engn Rural, P-5001801 Vila Real, Portugal
[2] Inst Food Res, Inst Food Res, Mass Spectrometry Grp, Norwich NR4 7UA, Norfolk, England
关键词
Eruca sativa; Diplotaxis tenuifolia; rocket; glucosinolates; geographical origin; seedlings; sprouts; LC/MS;
D O I
10.1021/jf061997d
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The Brassicaceae rocket species Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) are consumed throughout the world in salads, predominantly the leaves but also the flowers and more recently the sprouts (seedlings). Ontogenic profiling of glucosinolates and flavonoids in plants derived from commercial seed of these species has previously been done, but no studies have been conducted to determine how geographical origin affects glucosinolate composition in rocket species. Seeds from wild E. sativa L. and D. tenuifolia L. from diverse regions of the world were obtained from gene banks and grown under controlled conditions. Sprouts were harvested when they would normally be harvested for consumption, and glucosinolates were extracted and profiled in these accessions. All of the sprouts from Italian E. sativa L. had consistently high total glucosinolate content, with only a few exceptions, and also the highest percentage contents of 4-mercaptobutylglucosinolate. In contrast, sprouts produced from Central and Eastern European seeds had a much higher percentage of 4-methylthiobutylglucosinolate. With a single exception, Tunisia, all sprouts produced from North African seeds had very high 4-methylthiobutylglucosinolate contents. The single sample from China had a high total glucosinolate content and glucosinolate profile that was very similar to the accessions from Uzbekistan and Pakistan. All of the D. tenuifolia L. sprouts had consistently high total glucosinolate contents, and a high percentage of this was 4-mercaptobutylglucosinolate. This glucosinolate variation in levels and profiles of the rockets can be used for genetic studies, selected breeding, and human intervention studies.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
[1]   Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts [J].
Barillari, J ;
Canistro, D ;
Paolini, M ;
Ferroni, F ;
Pedulli, GF ;
Iori, R ;
Valgimigli, L .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (07) :2475-2482
[2]   Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket) [J].
Bennett, Richard N. ;
Rosa, Eduardo A. S. ;
Mellon, Fred A. ;
Kroon, Paul A. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (11) :4005-4015
[3]   Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket) [J].
Bennett, RN ;
Mellon, FA ;
Botting, NP ;
Eagles, J ;
Rosa, EAS ;
Williamson, G .
PHYTOCHEMISTRY, 2002, 61 (01) :25-30
[4]  
BHANDARI DC, 1997, ROCKET MEDITERRANEAN, P67
[5]  
BLOCK G, 1992, NUTR CANC, V19, P1
[6]  
Bones AM, 1996, PHYSIOL PLANTARUM, V97, P194, DOI 10.1111/j.1399-3054.1996.tb00497.x
[7]  
Bonnesen C, 2001, CANCER RES, V61, P6120
[8]   Modulation of cytochrome P-450 and glutathione S-transferase isoform expression in vivo by intact and degraded indolyl glucosinolates [J].
Bonnesen, C ;
Stephensen, PU ;
Andersen, O ;
Sorensen, H ;
Vang, O .
NUTRITION AND CANCER-AN INTERNATIONAL JOURNAL, 1999, 33 (02) :178-187
[9]   Fruit and vegetable intakes and prostate cancer risk [J].
Cohen, JH ;
Kristal, AR ;
Stanford, JL .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (01) :61-68
[10]   GLUCOSINOLATE COMPOSITION OF SEEDS FROM 297 SPECIES OF WILD PLANTS [J].
DAXENBICHLER, ME ;
SPENCER, GF ;
CARLSON, DG ;
ROSE, GB ;
BRINKER, AM ;
POWELL, RG .
PHYTOCHEMISTRY, 1991, 30 (08) :2623-2638