EARLINET: towards an advanced sustainable European aerosol lidar network

被引:401
作者
Pappalardo, G. [1 ]
Amodeo, A. [1 ]
Apituley, A. [2 ]
Comeron, A. [3 ]
Freudenthaler, V. [4 ]
Linne, H. [5 ]
Ansmann, A. [6 ]
Boesenberg, J. [5 ]
D'Amico, G. [1 ]
Mattis, I. [7 ]
Mona, L. [1 ]
Wandinger, U. [6 ]
Amiridis, V. [8 ]
Alados-Arboledas, L. [9 ]
Nicolae, D. [10 ]
Wiegner, M. [4 ]
机构
[1] IMAA, CNR, Potenza, Italy
[2] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands
[3] Univ Politecn Cataluna, Barcelona, Spain
[4] Univ Munich, Munich, Germany
[5] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[6] Leibniz Inst Tropospharenforsch, Leipzig, Germany
[7] Meteorol Observ, Deutsch Wetterdienst Hohenpeissenberg, Hohenpeissenberg, Germany
[8] IAASARS, Natl Observ Athens, Penteli, Greece
[9] Univ Granada, Andalusian Ctr Environm Res, CEAMA, Granada, Spain
[10] Natl Inst R&D Optoelect, Magurele, Romania
关键词
MULTIWAVELENGTH RAMAN LIDAR; EYJAFJALLAJOKULL VOLCANIC CLOUD; SAHARAN DUST; SUN-PHOTOMETER; MICROPHYSICAL PROPERTIES; OPTICAL-PROPERTIES; IBERIAN PENINSULA; BACKSCATTER; INVERSION; EXTINCTION;
D O I
10.5194/amt-7-2389-2014
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi-wavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.
引用
收藏
页码:2389 / 2409
页数:21
相关论文
共 108 条
[1]  
Adam M., 2014, EARLINET ALL OBSERVA, DOI [10.1594/WDCC/EN_all_measurements_2000-2010, DOI 10.1594/WDCC/EN_ALL_MEASUREMENTS_2000-2010]
[2]  
Adam M., 2000, EARLINET CORRELATIVE, DOI [10.1594/WDCC/EN_Calipso_2006-2010, DOI 10.1594/WDCC/EN_CALIPSO_2006-2010]
[3]  
Adam M., 2000, EARLINET OBSERVATION, DOI [10.1594/WDCC/EN_VolcanicEruption_2000-2010, DOI 10.1594/WDCC/EN_VOLCANICERUPTION_2000-2010]
[4]  
Adam M., 2000, EARLINET CLIMATOLOGY, DOI [10.1594/WDCC/EN_Climatology_2000-2010, DOI 10.1594/WDCC/EN_CLIMATOLOGY_2000-2010]
[5]   Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry [J].
Alados-Arboledas, L. ;
Mueller, D. ;
Guerrero-Rascado, J. L. ;
Navas-Guzman, F. ;
Perez-Ramirez, D. ;
Olmo, F. J. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[6]   Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET) [J].
Amiridis, V ;
Balis, DS ;
Kazadzis, S ;
Bais, A ;
Giannakaki, E ;
Papayannis, A ;
Zerefos, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D21) :1-12
[7]   Optimizing CALIPSO Saharan dust retrievals [J].
Amiridis, V. ;
Wandinger, U. ;
Marinou, E. ;
Giannakaki, E. ;
Tsekeri, A. ;
Basart, S. ;
Kazadzis, S. ;
Gkikas, A. ;
Taylor, M. ;
Baldasano, J. ;
Ansmann, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (23) :12089-12106
[8]   Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements [J].
Amiridis, V. ;
Balis, D. S. ;
Giannakaki, E. ;
Stohl, A. ;
Kazadzis, S. ;
Koukouli, M. E. ;
Zanis, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2431-2440
[9]  
Amodeo A., 2014, ATMOS MEAS TEC UNPUB
[10]   Optimization of lidar data processing: a goal of the EARILINET-ASOS project [J].
Amodeo, Aldo ;
Mattis, Ina ;
Boeckmann, Christine ;
D'Amico, Giuseppe ;
Mueller, Detlef ;
Osterloh, Lukas ;
Chaikovsky, Anatoly ;
Pappalardo, Gelsomina ;
Ansmann, Albert ;
Apituley, Arnoud ;
Alados-Arboledas, Lucas ;
Balis, Dimitris ;
Comeron, Adolfo ;
Freudenthaler, Volker ;
Mitev, Valentin ;
Nicolae, Doina ;
Papayannis, Alexandros ;
Perrone, Maria Rita ;
Pietruezuk, Aleksander ;
Pujadas, Manuel ;
Putaud, Jean-Philippe ;
Ravetta, Francois ;
Rizi, Vincenzo ;
Simeonovs, Valentin ;
Spinelli, Nicola ;
Stebel, Kersten ;
Stoyanov, Dimitar ;
Trickl, Thomas ;
Wiegner, Matthias .
LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING III, 2007, 6750