Using support vector machines for long-term discharge prediction

被引:448
作者
Lin, Jian-Yi [1 ]
Cheng, Chun-Tian
Chau, Kwok-Wing
机构
[1] Dalian Univ Technol, Dept Civil Engn, Inst Hydroinformat, Dalian 116024, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Struct Engn, Kowloon, Hong Kong, Peoples R China
关键词
amoregressive moving-average (ARMA) models; long-term discharge prediction; neural networks; SCE-UA algorithm; support vector machine;
D O I
10.1623/hysj.51.4.599
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Accurate time- and site-specific forecasts of streamflow and reservoir inflow are important in effective hydropower reservoir management and scheduling. Traditionally, autoregressive moving-average (ARMA) models have been used in modelling water resource time series as a standard representation of stochastic time series. Recently, artificial neural network (ANN) approaches have been proven to be efficient when applied to hydrological prediction. In this paper, the support vector machine (SVM) is presented as a promising method for hydrological prediction. Over-fitting and local optimal solution are unlikely to occur with SVM, which implements the structural risk minimization principle rather than the empirical risk minimization principle. In order to identify appropriate parameters of the SVM prediction model, a shuffled complex evolution algorithm is performed through exponential transformation. The SVM prediction model is tested using the long-term observations of discharges of monthly river flow discharges in the Manwan Hydropower Scheme. Through the comparison of its performance with those of the ARMA and ANN models, it is demonstrated that SVM is a very potential candidate for the prediction of long-term discharges.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 44 条
[1]   Support vectors-based groundwater head observation networks design [J].
Asefa, T ;
Kemblowski, MW ;
Urroz, G ;
McKee, M ;
Khalil, A .
WATER RESOURCES RESEARCH, 2004, 40 (11) :W1150901-W1150914
[2]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[3]   Identification of support vector machines for runoff modelling [J].
Bray, M ;
Han, D .
JOURNAL OF HYDROINFORMATICS, 2004, 6 (04) :265-280
[4]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[5]   Artificial neural network approach to flood forecasting in the River Arno [J].
Campolo, M ;
Soldati, A ;
Andreussi, P .
HYDROLOGICAL SCIENCES JOURNAL, 2003, 48 (03) :381-398
[6]   Support vector machine with adaptive parameters in financial time series forecasting [J].
Cao, LJ ;
Tay, FEH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1506-1518
[7]  
Chen PW, 2004, IEEE IJCNN, P2035
[8]   Estimation, forecasting and extrapolation of river flows by artificial neural networks [J].
Cigizoglu, HK .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2003, 48 (03) :349-361
[9]   An artificial neural network approach to rainfall-runoff modelling [J].
Dawson, CW ;
Wilby, R .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1998, 43 (01) :47-66
[10]   Applying support vector machines to predict building energy consumption in tropical region [J].
Dong, B ;
Cao, C ;
Lee, SE .
ENERGY AND BUILDINGS, 2005, 37 (05) :545-553