Yang-Lee theory for a nonequilibrium phase transition

被引:62
作者
Arndt, PF [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
D O I
10.1103/PhysRevLett.84.814
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To analyze phase transitions in a nonequilibrium system, we study its grand canonical partition function as a function of complex fugacity. Real and positive roots of the partition function mark phase transitions. This behavior, first found by Yang and Lee under general conditions for equilibrium systems, can also be applied to nonequilibrium phase transitions. We consider a one-dimensional diffusion model with periodic boundary conditions. Depending on the diffusion rates, we find real and positive roots and can distinguish two regions of analyticity, which can be identified with two different phases. In a region of the parameter space, both of these phases coexist. The condensation point can be computed with high accuracy.
引用
收藏
页码:814 / 817
页数:4
相关论文
共 17 条
[1]   Spontaneous breaking of translational invariance and spatial condensation in stationary states on a ring. I. The neutral system [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (1-2) :1-65
[2]   Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :L45-L51
[3]   Stochastic models on a ring and quadratic algebras. The three-species diffusion problem [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :833-843
[4]   First-order phase transitions in one-dimensional steady states [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :783-815
[5]  
ARNDT PF, UNPUB
[6]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[7]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842
[8]   Phase separation in one-dimensional driven diffusive systems [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :425-429
[9]   Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW E, 1998, 58 (03) :2764-2778
[10]   ASYMMETRIC EXCLUSION MODEL WITH 2 SPECIES - SPONTANEOUS SYMMETRY-BREAKING [J].
EVANS, MR ;
FOSTER, DP ;
GODRECHE, C ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) :69-102