Isolation and developmental expression analysis of Tbx22, the mouse homolog of the human X-linked cleft palate gene

被引:40
作者
Bush, JO
Lan, Y
Maltby, KM
Jiang, RL
机构
[1] Univ Rochester, Ctr Oral Biol, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biol, Rochester, NY 14642 USA
关键词
T-box; Tbx; Tbx22; palate development; cleft palate; ankyloglossia; tongue tie; tongue development;
D O I
10.1002/dvdy.10154
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Mutations in the TBX22 gene have been identified recently in patients with the X-linked cleft palate and ankyloglossia syndrome, suggesting that the TBX22 transcription factor plays an important role in palate development. However, because ankyloglossia has been reported in the majority of patients with TBX22 mutations, it has been speculated that the cleft palate phenotype is secondary to defective fetal tongue movement. To understand the role of TBX22 in disease pathogenesis and in normal development, it is necessary to carry out a detailed temporal and spatial gene expression analysis. We report here the isolation and developmental expression analysis of the mouse homolog Tbx22. The mouse Tbx22 gene encodes a putative protein of 517 amino acid residues, which shares 72% overall amino acid sequence identity with the human TBX22 protein. By using interspecific backcross analysis, we have localized the Tbx22 gene to mouse chromosome X, in a region syntenic to human chromosome Xq21, where the TBX22 gene resides, indicating that Tbx22 is the ortholog of human TBX22. Our in situ hybridization analysis shows that Tbx22 is expressed in a temporally and spatially highly restricted pattern during mouse palate and tongue development. Together with the mutant phenotypes in human patients, our data indicate a primary role for Tbx22 in both palate and tongue development. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 20 条
[1]   Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome [J].
Bamshad, M ;
Lin, RC ;
Law, DJ ;
Watkins, WS ;
Krakowiak, PA ;
Moore, ME ;
Franceschini, P ;
Lala, R ;
Holmes, LB ;
Gebuhr, TC ;
Bruneau, BG ;
Schinzel, A ;
Seidman, JG ;
Seidman, CE ;
Jorde, LB .
NATURE GENETICS, 1997, 16 (03) :311-315
[2]   Mutations in human cause limb and cardiac malformation in Holt-Oram syndrome [J].
Basson, CT ;
Bachinsky, DR ;
Lin, RC ;
Levi, T ;
Elkins, JA ;
Soults, J ;
Grayzel, D ;
Kroumpouzou, E ;
Traill, TA ;
LeblancStraceski, J ;
Renault, B ;
Kucherlapati, R ;
Seidman, JG ;
Seidman, CE .
NATURE GENETICS, 1997, 15 (01) :30-35
[3]   The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia [J].
Braybrook, C ;
Doudney, K ;
Marçano, ACB ;
Arnason, A ;
Bjornsson, A ;
Patton, MA ;
Goodfellow, PJ ;
Moore, GE ;
Stanier, P .
NATURE GENETICS, 2001, 29 (02) :179-183
[4]   Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene [J].
Chieffo, C ;
Garvey, N ;
Gong, WL ;
Roe, B ;
Zhang, GZ ;
Silver, L ;
Emanuel, BS ;
Budarf, ML .
GENOMICS, 1997, 43 (03) :267-277
[5]   Tbx1, a DiGeorge syndrome candidate gene, is regulated by Sonic hedgehog during pharyngeal arch development [J].
Garg, V ;
Yamagishi, C ;
Hu, TH ;
Kathiriya, IS ;
Yamagishi, H ;
Srivastava, D .
DEVELOPMENTAL BIOLOGY, 2001, 235 (01) :62-73
[6]  
GORSKI SM, 1992, AM J HUM GENET, V50, P1129
[7]   DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1 [J].
Jerome, LA ;
Papaioannou, VE .
NATURE GENETICS, 2001, 27 (03) :286-291
[8]   The slug gene is not essential for mesoderm or neural crest development in mice [J].
Jiang, RL ;
Lan, Y ;
Norton, CR ;
Sundberg, JP ;
Gridley, T .
DEVELOPMENTAL BIOLOGY, 1998, 198 (02) :277-285
[9]   A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins [J].
Lamolet, B ;
Pulichino, AM ;
Lamonerie, T ;
Gauthier, Y ;
Brue, T ;
Enjalbert, A ;
Drouin, J .
CELL, 2001, 104 (06) :849-859
[10]   Osr2, a new mouse gene related to Drosophila odd-skipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development [J].
Lan, Y ;
Kingsley, PD ;
Cho, ES ;
Jiang, RL .
MECHANISMS OF DEVELOPMENT, 2001, 107 (1-2) :175-179