The Shapley value on convex geometries

被引:52
作者
Bilbao, JM
Edelman, PH
机构
[1] Univ Sevilla, Escuela Super Ingn Matemat Appl 2, Seville 41092, Spain
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
cooperative game; convex geometry; Shapley value;
D O I
10.1016/S0166-218X(99)00218-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-Krein-Milman property. If L is the boolean algebra 2(N) then we obtain an n-person cooperative game. Faigle and Kern investigated games where L is the distributive lattice of the order ideals of the poset of players. We obtain two classes of axioms that give rise to a unique Shapley value for games on convex geometries. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 11 条
[1]  
Edelman P.H., 1985, GEOM DEDICATA, V19, P247, DOI [DOI 10.1007/BF00149365, 10.1007/bf00149365]
[2]  
Edelman PH, 1996, SOUTHERN CALIF LAW R, V70, P63
[3]   THE SHAPLEY VALUE FOR COOPERATIVE GAMES UNDER PRECEDENCE CONSTRAINTS [J].
FAIGLE, U ;
KERN, W .
INTERNATIONAL JOURNAL OF GAME THEORY, 1992, 21 (03) :249-266
[4]  
FAIGLE U, 1997, IN PRESS MATH PROGRA
[5]  
Frank A., 1981, N1735NSF RAND
[6]  
Greenberg J., 1994, HDB GAME THEORY EC A, V2, P1305
[7]  
Myerson R. B., 1977, Mathematics of Operations Research, V2, P225, DOI 10.1287/moor.2.3.225
[8]   OPTIMAL LOCATION OF CANDIDATES IN IDEOLOGICAL SPACE [J].
OWEN, G ;
SHAPLEY, LS .
INTERNATIONAL JOURNAL OF GAME THEORY, 1989, 18 (03) :339-356
[9]  
Owen G., 1982, Game Theory
[10]  
Shapley LS., 1953, CONTRIBUTIONS THEORY, P307