Attenuation of Helicobacter pylori CagA-SHP-2 signaling by interaction betwwen CagA and C-terminal Src kinase

被引:225
作者
Tsutsumi, R
Higashi, H
Higuchi, M
Okada, M
Hatakeyama, M
机构
[1] Hokkaido Univ, Div Mol Oncol, Inst Med Genet, Sapporo, Hokkaido 0600185, Japan
[2] Hokkaido Univ, Grad Sch Sci, Sapporo, Hokkaido 0600185, Japan
[3] Osaka Univ, Res Inst Microbial Dis, Dept Oncogene Res, Suita, Osaka 5650871, Japan
关键词
D O I
10.1074/jbc.M208155200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
diseases ranging from gastritis to cancer. The CagA protein is the product of the cagA gene carried among virulent H. pylori strains and is associated with severe disease outcomes, most notably gastric carcinoma. CagA is injected from the attached H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation. The phosphorylated CagA binds and activates SHP-2 phosphatase and thereby induces a growth factor-like morphological change termed the "humming-bird phenotype." In this work, we demonstrate that CagA is also capable of interacting with C-terminal Src kinase (Csk). As is the case with SHP-2, Csk selectively binds tyrosine-phosphorylated CagA via its SH2 domain. Upon complex formation, CagA stimulates Csk, which in turn inactivates the Src family of protein-tyrosine kinases. Because Src family kinases are responsible for CagA phosphorylation, an essential prerequisite of CagA.SHP-2 complex formation and subsequent induction of the hummingbird phenotype, our results indicate that CagA-Csk interaction down-regulates CagA.SHP-2 signaling by both competitively inhibiting CagA.SHP-2 complex formation and reducing levels of CagA phosphorylation. We further demonstrate that CagA.SHP-2 signaling eventually induces apoptosis in AGS cells. Our results thus indicate that CagA-Csk interaction prevents excess cell damage caused by deregulated activation of SHP-2. Attenuation of CagA activity by Csk may enable cagA-positive H. pylori to persistently infect the human stomach for decades while avoiding excess CagA toxicity to the host.
引用
收藏
页码:3664 / 3670
页数:7
相关论文
共 52 条
[1]   Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells [J].
Asahi, M ;
Azuma, T ;
Ito, S ;
Ito, Y ;
Suto, H ;
Nagai, Y ;
Tsubokawa, M ;
Tohyama, Y ;
Maeda, S ;
Omata, M ;
Suzuki, T ;
Sasakawa, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 191 (04) :593-602
[2]   Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells [J].
Backert, S ;
Moese, S ;
Selbach, M ;
Brinkmann, V ;
Meyer, TF .
MOLECULAR MICROBIOLOGY, 2001, 42 (03) :631-644
[3]   Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus [J].
Backert, S ;
Ziska, E ;
Brinkmann, V ;
Zimny-Arndt, U ;
Fauconnier, A ;
Jungblut, PR ;
Naumann, M ;
Meyer, TF .
CELLULAR MICROBIOLOGY, 2000, 2 (02) :155-164
[4]   CHARACTERIZATION OF PP60(C-SRC) TYROSINE KINASE-ACTIVITIES USING A CONTINUOUS ASSAY - AUTOACTIVATION OF THE ENZYME IS AN INTERMOLECULAR AUTOPHOSPHORYLATION PROCESS [J].
BARKER, SC ;
KASSEL, DB ;
WEIGL, D ;
HUANG, XY ;
LUTHER, MA ;
KNIGHT, WB .
BIOCHEMISTRY, 1995, 34 (45) :14843-14851
[5]  
BLASER MJ, 1995, CANCER RES, V55, P2111
[6]   Regulation, substrates and functions of src [J].
Brown, MT ;
Cooper, JA .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 1996, 1287 (2-3) :121-149
[7]   cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors [J].
Censini, S ;
Lange, C ;
Xiang, ZY ;
Crabtree, JE ;
Ghiara, P ;
Borodovsky, M ;
Rappuoli, R ;
Covacci, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14648-14653
[8]   Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells [J].
Christie, PJ ;
Vogel, JP .
TRENDS IN MICROBIOLOGY, 2000, 8 (08) :354-360
[9]   THE WHEN AND HOW OF SRC REGULATION [J].
COOPER, JA ;
HOWELL, B .
CELL, 1993, 73 (06) :1051-1054
[10]   MOLECULAR CHARACTERIZATION OF THE 128-KDA IMMUNODOMINANT ANTIGEN OF HELICOBACTER-PYLORI-ASSOCIATED WITH CYTOTOXICITY AND DUODENAL-ULCER [J].
COVACCI, A ;
CENSINI, S ;
BUGNOLI, M ;
PETRACCA, R ;
BURRONI, D ;
MACCHIA, G ;
MASSONE, A ;
PAPINI, E ;
XIANG, ZY ;
FIGURA, N ;
RAPPUOLI, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (12) :5791-5795