Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

被引:28
作者
Barranco, V. [1 ]
Pico, F. [2 ]
Ibanez, J. [2 ]
Lillo-Rodenas, M. A. [3 ]
Linares-Solano, A. [3 ]
Kimura, M. [4 ]
Oya, A. [5 ]
Rojas, R. M. [1 ]
Amarilla, J. M. [1 ]
Rojo, J. M. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[2] CSIC, Ctr Nacl Invest Met, E-28040 Madrid, Spain
[3] Univ Alicante, MCMA, Dept Quim Inorgan, E-03080 Alicante, Spain
[4] Gun Ei Chem Ind Co Ltd, Gunma 370, Japan
[5] Gunma Univ, Fac Engn, Kiryu, Gunma 376, Japan
关键词
Ruthenium oxide; Carbon nanofibres; Composites; Electrodes; Supercapacitors; ACTIVATED-CARBON; ELECTROCHEMICAL CHARACTERIZATION; COMPOSITE ELECTRODES; MESOPOROUS CARBON; NANOCOMPOSITE ELECTRODES; RUO2; NANOTUBES; SUPERCAPACITORS; NANOPARTICLES; STORAGE;
D O I
10.1016/j.electacta.2009.07.080
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m(2) g(-1)). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg(-1)) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm(-2)). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7452 / 7457
页数:6
相关论文
共 41 条
[1]   Application of electrochemically prepared carbon nanofibers in supercapacitors [J].
Adhyapak, PV ;
Maddanimath, T ;
Pethkar, S ;
Chandwadkar, AJ ;
Negi, YS ;
Vijayamohanan, K .
JOURNAL OF POWER SOURCES, 2002, 109 (01) :105-110
[2]   Supercapacitance of solid carbon nanofibers made from ethanol flames [J].
Bao, Qiaoliang ;
Bao, Shujuan ;
Li, Chang Ming ;
Qi, Xiang ;
Pan, Chunxu ;
Zang, Jianfeng ;
Lu, Zhisong ;
Li, Yibin ;
Tang, Ding Yuan ;
Zhang, Sam ;
Lian, Keryn .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3612-3618
[3]   Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors [J].
Chen, WC ;
Hu, CC ;
Wang, CC ;
Min, CK .
JOURNAL OF POWER SOURCES, 2004, 125 (02) :292-298
[4]   Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells [J].
Cuentas Gallegos, Ana Karina ;
Rincon, Marina E. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :743-747
[5]   Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors [J].
Dandekar, MS ;
Arabale, G ;
Vijayamohanan, K .
JOURNAL OF POWER SOURCES, 2005, 141 (01) :198-203
[6]   Structural characterization of cup-stacked-type nanofibers with an entirely hollow core [J].
Endo, M ;
Kim, YA ;
Hayashi, T ;
Fukai, Y ;
Oshida, K ;
Terrones, M ;
Yanagisawa, T ;
Higaki, S ;
Dresselhaus, MS .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1267-1269
[7]   Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2002, 40 (10) :1775-1787
[8]   Proton NMR and dynamic studies of hydrous ruthenium oxide [J].
Fu, RQ ;
Ma, ZR ;
Zheng, JP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (14) :3592-3596
[9]   How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors [J].
Hu, CC ;
Chen, WC ;
Chang, KH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A281-A290
[10]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695