Pseudonormality and a Lagrange multiplier theory for constrained optimization

被引:59
作者
Bertsekas, DP [1 ]
Ozdaglar, AE [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
pseudonormality; informative Lagrange multipliers; constraint qualifications; exact penalty functions;
D O I
10.1023/A:1016083601322
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider optimization problems with equality, inequality, and abstract set constraints, and we explore various characteristics of the constraint set that imply the existence of Lagrange multipliers. We prove a generalized version of the Fritz-John theorem, and we introduce new and general conditions that extend and unify the major constraint qualifications. Among these conditions, two new properties, pseudonormality and quasinormality, emerge as central within the taxonomy of interesting constraint characteristics. In the case where there is no abstract set constraint, these properties provide the connecting link between the classical constraint qualifications and two distinct pathways to the existence of Lagrange multipliers: one involving the notion of quasiregularity and the Farkas lemma, and the other involving the use of exact penalty functions. The second pathway also applies in the general case where there is an abstract set constraint.
引用
收藏
页码:287 / 343
页数:57
相关论文
共 29 条
[1]  
ABADIE J., 1967, NONLINEAR PROGRAMMIN
[2]  
Arrow KJ, 1961, NAV RES LOG, V8, P175, DOI DOI 10.1002/NAV.3800080206
[3]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[4]  
Bazaraa M.S., 2013, Nonlinear Programming-Theory and Algorithms, V3rd
[5]  
BAZARAA MS, 1982, MATH PROGRAM STUD, V19, P1, DOI 10.1007/BFb0120980
[6]  
Bertsekas D. P., 1999, NONLINEAR PROGRAMMIN
[7]  
Bertsekas D.P., 2002, CONVEX ANAL OPTIMIZA
[8]  
Bonnans J. F., 2000, PERTURBATION ANAL OP
[9]  
Borwein J. M., 2000, CMS BOOKS MATH
[10]  
Clarke, 1990, OPTIMIZATION NONSMOO, DOI DOI 10.1137/1.9781611971309