How to construct constant-round zero-knowledge proof systems for NP

被引:227
作者
Goldreich, O [1 ]
Kahan, A [1 ]
机构
[1] BRM TECHNOL, JERUSALEM, ISRAEL
关键词
zero-knowledge proofs; NP; claw-free functions; commitment schemes; coin flipping protocols; parallel composition of proof systems;
D O I
10.1007/s001459900010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Constant-round zero-knowledge proof systems for every language in Np are presented, assuming the existence of a collection of claw-free functions. In particular, it follows that such proof systems exist assuming the intractability of either the Discrete Logarithm Problem or the Factoring Problem for Plum integers.
引用
收藏
页码:167 / 189
页数:23
相关论文
共 17 条
[1]  
BLUM M, 1988, 20 STOC, P103
[2]  
BLUM M, 1983, SIGACT NEWS, V15
[3]  
Boyar J. F., 1990, Journal of Cryptology, V2, P63, DOI 10.1007/BF00204448
[4]   MINIMUM DISCLOSURE PROOFS OF KNOWLEDGE [J].
BRASSARD, G ;
CHAUM, D ;
CREPEAU, C .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (02) :156-189
[5]   CONSTANT-ROUND PERFECT ZERO-KNOWLEDGE COMPUTATIONALLY CONVINCING PROTOCOLS [J].
BRASSARD, G ;
CREPEAU, C ;
YUNG, M .
THEORETICAL COMPUTER SCIENCE, 1991, 84 (01) :23-52
[6]  
FEIGE U, 1990, LECT NOTES COMPUT SC, V435, P526
[7]  
GOLDREICH O, 1991, J ACM, V38, P691, DOI 10.1145/116825.116852
[8]  
Goldreich O., 1993, Journal of Cryptology, V6, P21, DOI 10.1007/BF02620230
[9]   On the composition of zero-knowledge proof systems [J].
Goldreich, O ;
Krawczyk, H .
SIAM JOURNAL ON COMPUTING, 1996, 25 (01) :169-192
[10]  
Goldreich O., 1989, 2UST P STOC, P25