Functional analysis of the C-terminal extension of telomerase reverse transcriptase - A putative "Thumb" domain

被引:49
作者
Hossain, S [1 ]
Singh, S [1 ]
Lue, NF [1 ]
机构
[1] Cornell Univ, Weill Med Coll, William Randolph Hearst Microbiol Res Ctr, Dept Immunol & Microbiol, New York, NY 10021 USA
关键词
D O I
10.1074/JBC.m201976200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomerase is an RNA-protein complex responsible for the extension of one strand of telomere terminal repeats. The catalytic protein subunit of telomerase, known generically as telomerase reverse transcriptase (TERT), exhibits significant homology to reverse transcriptases (RTs) encoded by retroviruses and retroelements. The mechanisms of telomerase may therefore be similar to those of the conventional reverse transcriptases. In this report, we explore potential similarity between these two classes of proteins in a region with no evident sequence similarity. Previous analysis has implicated a C-terminal domain of retroviral RTs (known as the "thumb" domain) in template-primer binding and in processivity control. The equivalent region of TERTs, although similar to one another, does not exhibit significant sequence homology to retroviral RTs. However, we found that removal of this region of yeast TERT similarly resulted in a decrease in the stability of telomerase-DNA complex and in the processivity of telomerase-mediated nucleotide addition. Moreover, the C-terminal domain of TERT exhibits a nucleic acid binding activity when recombinantly expressed and purified. Finally, amino acid substitutions of conserved residues in this region of TERT were found to impair telomerase activity and processivity. We suggest that mechanistic similarity between telomerase and retroviral RTs may extend beyond the regions with apparent sequence similarity.
引用
收藏
页码:36174 / 36180
页数:7
相关论文
共 49 条
[1]  
ARAI K, 2002, IN PRESS J BIOL CHEM
[2]   Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions [J].
Bachand, F ;
Autexier, C .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1888-1897
[3]   Polymerization defects within human telomerase are distinct from telomerase RNA and TEP1 binding [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3329-3340
[4]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[5]   REDUCED FRAMESHIFT FIDELITY AND PROCESSIVITY OF HIV-1 REVERSE-TRANSCRIPTASE MUTANTS CONTAINING ALANINE SUBSTITUTIONS IN HELIX-H OF THE THUMB SUBDOMAIN [J].
BEBENEK, K ;
BEARD, WA ;
CASASFINET, JR ;
KIM, HR ;
DARDEN, TA ;
WILSON, SH ;
KUNKEL, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19516-19523
[6]   TELOMERASES [J].
BLACKBURN, EH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :113-129
[7]   Functional analysis of conserved residues in the putative "finger" domain of telomerase reverse transcriptase [J].
Bosoy, D ;
Lue, NF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (49) :46305-46312
[8]   Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus [J].
Bressanelli, S ;
Tomei, L ;
Roussel, A ;
Incitti, I ;
Vitale, RL ;
Mathieu, M ;
De Francesco, R ;
Rey, FA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13034-13039
[9]   A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24199-24207
[10]   Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax [J].
Bryan, TM ;
Sperger, JM ;
Chapman, KB ;
Cech, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8479-8484