Homoclinic orbits of invertible maps

被引:17
作者
Bergamin, JM [1 ]
Bountis, T
Vrahatis, MN
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
[2] Univ Patras, Ctr Res & Applicat Nonlinear Syst, Patras 26500, Greece
关键词
D O I
10.1088/0951-7715/15/5/313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a systematic method for finding all homoclinic orbits of invertible maps in any finite dimension. One advantage of this method is that it can also be used to order and classify all the homoclinic orbits, using symbolic dynamics, if a certain criterion is satisfied. We also present a more direct scheme, which quickly locates homoclinic orbits without, however, being able to order and classify them. Our work represents an extension of a method introduced in an earlier paper, with which one could only find homoclinic orbits possessing a certain symmetry. Thus, asymmetric homoclinic orbits can now be as easily computed. One application of our results is the explicit construction of breather (and multibreather) solutions of,a class of one-dimensional nonlinear lattices.
引用
收藏
页码:1603 / 1619
页数:17
相关论文
共 29 条
[1]  
ALEXANDROFF P, 1965, TOPOLOGIE
[2]  
AUBRY S, 2000, P NATO ADV RES WORKS
[3]   A method for locating symmetric homoclinic orbits using symbolic dynamics [J].
Bergamin, JM ;
Bountis, T ;
Jung, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (45) :8059-8070
[4]   Numerical approximation of homoclinic chaos [J].
Beyn, WJ ;
Kleinkauf, JM .
NUMERICAL ALGORITHMS, 1997, 14 (1-3) :25-53
[5]   The numerical computation of homoclinic orbits for maps [J].
Beyn, WJ ;
Kleinkauf, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1207-1236
[6]   Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices [J].
Bountis, T ;
Capel, HW ;
Kollmann, M ;
Ross, JC ;
Bergamin, JM ;
van der Weele, JP .
PHYSICS LETTERS A, 2000, 268 (1-2) :50-60
[7]   DYNAMICS FOR A 2-DIMENSIONAL ANTISYMMETRIC MAP [J].
FANG, HP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (15) :5187-5200
[8]   POMULT: A program for computing periodic orbits in Hamiltonian systems based on multiple shooting algorithms [J].
Farantos, SC .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) :240-258
[9]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[10]  
FLACH S, 1995, PHYS REV E, V51, P1504