Members of the Bcl-2 family of proteins are key regulators of apoptosis. Some of these proteins undergo posttranslational modification, such as phosphorylation or proteolysis, that serves to alter their function. Caspases are known to cleave Bid, a proapoptotic family member, as well as Bcl-2 and Bcl-X-L, two prosurvival family members, which activate their cytotoxic activity resulting in the release of cytochrome c from mitochondria. Previously we showed that Bax was cleaved by calpain rather than by caspases from full-length 21 kDa to generate a cleavage fragment of 18 kDa. Since cleavage of Bid serves to activate its cytotoxic activity, we wanted to determine if the p18 form of Bax exhibited increased cytotoxicity compared to pal Bax. Using a transient transfection system in human embryonic kidney 293T cells we show that the p18 form of Bax displays a more potent ability to induce cell death. The pancaspase inhibitor Z-VAD-fmk completely blocked apoptosis induced by p21 Bax but only partially inhibited apoptosis induced by p18 Bax. Cyclosporin A, an inhibitor of the mitochondrial permeability transition (PT) pore, had no effect on Bax-mediated apoptosis of 293T cells suggesting that apoptosis was independent of the PT. Thus cleavage of pal Bax during apoptosis to the p18 form may serve to increase the intrinsic cytotoxic properties of this proapoptotic molecule and enhance its cell death function at the mitochondria. (C) 2000 Academic Press.