RETRACTED: RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries (Publication with Expression of Concern. See vol. 117, pg. 2215, 2021) (Retracted Article)

被引:58
作者
Dubroca, Caroline
Loyer, Xavier
Retailleau, Kevin
Loirand, Gervalse
Pacaud, Pierre
Feron, Olivier
Balligand, Jean-Luc
Levy, Bernard I.
Heymes, Christophe
Henrion, Daniel [1 ]
机构
[1] INSERM, Dept Integrated Neurovasc Biol, CNRS, UMR 6214,Fac Med,U771, F-49045 Angers, France
[2] INSERM, Ctr Rech Cardiovasc Lariboisiere, U689, Paris, France
[3] INSERM, Inst Thorax, U533, Nantes, France
[4] UCL, Unit Pharmacol & Therapeut, FATH5349, Brussels, Belgium
关键词
mechanotransduction; contractile function; vasoconstriction; blood pressure; caveolae;
D O I
10.1016/j.cardiores.2006.10.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Myogenic tone, which has a major role in the regulation of local blood flow, refers to the ability of vascular smooth muscle to adapt its contractility to changes in transmural pressure. Although Rho-kinase is involved in myogenic tone, the pathway involved remains unclear, especially concerning translocation to the plasma membrane and activation of RhoA. As caveolae have a key role in the signal transduction of membrane-bound proteins, we tested the hypothesis that RhoA might be activated by pressure and that its activation might involve caveolin-1, which has been shown to be involved in vascular functions. Methods: Myogenic tone was studied in isolated rat mesenteric resistance arteries (118 +/- 15 mu m internal diameter with a pressure of 75 mmHg) submitted to pressure steps (25, 75, and 150 mmHg). Pharmacological blockade of caveolae or RhoA-Rho-kinase pathway was assessed by confocal microscopy in pressurized arteries to analyze protein co-localization and by co-immunoprecipitation in order to confirm protein interactions. Caveolin-1-deficient mice were used to confirm the role of the protein in myogenic tone. Results: Pressure-induced myogenic tone was significantly reduced by RhoA inactivation with TAT-C3 (90.5% inhibition at 150 mmHg) and by the Rho-kinase inhibitor Y27632 (91.8% inhibition at 150 mmHg). In arteries pressurized at 150 mmHg, RhoA was localized to the plasma membrane (localization by confocal microscopy and increased quantity of RhoA in the membrane fraction after protein extraction). Thus, translocation of RhoA to the plasma membrane was associated with pressure-induced tone. In addition, caveolae disruption with methyl-beta-cyclodextrin reduced myogenic tone by 66% at 150 mmHg. Further, myogenic tone was significantly reduced to 24% of control in caveolin-1-deficient mice (active tone was 32.3 +/- 2.8 mu m and 9.1 +/- 3.7 mu m in +/+ and -/- mice, respectively, n=5 per group), suggesting a key role of caveolin-1 in myogenic tone. Finally, RhoA and caveolin-1 co-immunoprecipitation and co-localization significantly increased when myogenic tone developed at 150 mmHg (co-localization showed 26 +/- 13% merging at 25 mmHg versus 97 +/- 21% at 150 mmHg, n=5). Co-immunoprecipitation was prevented by TAT-C3 and by methyl beta-cyclodextrin. Conclusion: RhoA activation is critical for the development of myogenic tone in resistance arteries. This activation induced translocation of RhoA to the plasma membrane within caveolae, where the interaction of RhoA with caveolin-1 leads selectively to the activation of a Rho-kinase-dependent force development. (c) 2006 European Society of Cardiology. Published by Elsevier B.V.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 47 条
[1]   INTRACELLULAR-LOCALIZATION OF THE P21(RHO) PROTEINS [J].
ADAMSON, P ;
PATERSON, HF ;
HALL, A .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :617-627
[2]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[3]   Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1 [J].
Bergdahl, A ;
Gomez, MF ;
Dreja, K ;
Xu, SZ ;
Adner, M ;
Beech, DJ ;
Broman, J ;
Hellstrand, P ;
Swärd, K .
CIRCULATION RESEARCH, 2003, 93 (09) :839-847
[4]   REGULATION OF ARTERIAL TONE BY ACTIVATION OF CALCIUM-DEPENDENT POTASSIUM CHANNELS [J].
BRAYDEN, JE ;
NELSON, MT .
SCIENCE, 1992, 256 (5056) :532-535
[5]   Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior [J].
Cipolla, MJ ;
Gokina, NI ;
Osol, G .
FASEB JOURNAL, 2002, 16 (01) :72-76
[6]   Signaling mechanisms underlying the vascular myogenic response [J].
Davis, MJ ;
Hill, MA .
PHYSIOLOGICAL REVIEWS, 1999, 79 (02) :387-423
[7]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[8]   Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction [J].
Dreja, K ;
Voldstedlund, M ;
Vinten, J ;
Tranum-Jensen, J ;
Hellstrand, P ;
Swärd, K .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2002, 22 (08) :1267-1272
[9]   Involvement of RhoA/Rho kinase pathway in myogenic tone in the rabbit facial vein [J].
Dubroca, C ;
You, D ;
Lévy, DI ;
Loufrani, L ;
Henrion, D .
HYPERTENSION, 2005, 45 (05) :974-979
[10]   Emerging themes in lipid rafts and caveolae [J].
Galbiati, F ;
Razani, B ;
Lisanti, MP .
CELL, 2001, 106 (04) :403-411