Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria

被引:64
作者
Maltseva, OV
Tsoi, TV
Quensen, JF
Fukuda, M
Tiedje, JM
机构
[1] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA
[3] Nagaoka Univ Technol, Dept Bioengn, Nagaoka, Niigata 94021, Japan
关键词
polychlorinated biphenyls; PCBs; PCB dechlorination; PCB oxidation; transformation products;
D O I
10.1023/A:1008319306757
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We studied the aerobic degradation of eight PCB congeners which comprise from 70 to 85% of the anaerobic dechlorination products from Aroclor 1242, including 2-, 4-, 2,4-, 2,6-, 2,2'-, 2,4'-, 2,2',4-, and 2,4,4'-chlorobiphenyl (CB), and the biodegradation of their mixtures designed to simulate anaerobic dechlorination profiles M and C. Strains Comamonas testosteroni VP44 and Rhodococcus erythreus NY05 preferentially oxidized a para-substituted ring, while Rhodococcus sp. RHA1, similar to well known strain Burkholderia sp. LB400, preferably attacked an ortho-chlorinated ring. Strains with ortho-directed attack extensively degraded 2,4'- and 2,4,4'-CB into 4-chlorobenzoate, while bacteria with para-directed attack transformed these congeners mostly into potentially problematic meta-cleavage products. The strains that preferentially oxidized an ortho-substituted ring readily degraded seven of the eight congeners supplied individually; only 2,6-CB was poorly degraded. Degradation of 2,2'- and 2,4,4'-CB was reduced when present in mixtures M and C. Higher efficiencies of degradation of the individual congeners and defined PCB mixtures M and C and greater production of chlorobenzoates were observed with bacteria that preferentially attack an ortho-substituted ring. PCB congeners 2,4'-, 2,2',4-, and 2,4,4'-CB can be used to easily identify bacteria with ortho-directed attack which are advantageous for use in the aerobic stage of the two-phase (anaerobic/aerobic) PCB bioremediation scheme.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 32 条
[1]   FACTORS INFLUENCING THE RATE OF POLYCHLORINATED BIPHENYL DECHLORINATION IN HUDSON RIVER SEDIMENTS [J].
ABRAMOWICZ, DA ;
BRENNAN, MJ ;
VANDORT, HM ;
GALLAGHER, EL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (06) :1125-1131
[2]   AEROBIC AND ANAEROBIC BIODEGRADATION OF PCBS - A REVIEW [J].
ABRAMOWICZ, DA .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 1990, 10 (03) :241-249
[3]   BIOCHEMICAL AND PHOTOCHEMICAL PROCESSES IN THE DEGRADATION OF CHLORINATED BIPHENYLS [J].
BAXTER, RM ;
SUTHERLAND, DA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1984, 18 (08) :608-610
[4]   INFLUENCE OF CHLORINE SUBSTITUTION PATTERN ON THE DEGRADATION OF POLYCHLORINATED-BIPHENYLS BY 8 BACTERIAL STRAINS [J].
BEDARD, DL ;
HABERL, ML .
MICROBIAL ECOLOGY, 1990, 20 (02) :87-102
[5]   EXTENSIVE DEGRADATION OF AROCLORS AND ENVIRONMENTALLY TRANSFORMED POLYCHLORINATED-BIPHENYLS BY ALCALIGENES-EUTROPHUS H850 [J].
BEDARD, DL ;
WAGNER, RE ;
BRENNAN, MJ ;
HABERL, ML ;
BROWN, JF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (05) :1094-1102
[6]   RAPID ASSAY FOR SCREENING AND CHARACTERIZING MICROORGANISMS FOR THE ABILITY TO DEGRADE POLYCHLORINATED-BIPHENYLS [J].
BEDARD, DL ;
UNTERMAN, R ;
BOPP, LH ;
BRENNAN, MJ ;
HABERL, ML ;
JOHNSON, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (04) :761-768
[7]   EVIDENCE FOR NOVEL MECHANISMS OF POLYCHLORINATED BIPHENYL METABOLISM IN ALCALIGENES-EUTROPHUS H850 [J].
BEDARD, DL ;
HABERL, ML ;
MAY, RJ ;
BRENNAN, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (05) :1103-1112
[8]  
Bedard DL, 1995, MICROBIAL TRANSFORMA, P127
[9]   Comparison of the degradation patterns of polychlorinated biphenyl congoners in Aroclors by Pseudomonas strain LB400 after growth on various carbon sources [J].
Billingsley, KA ;
Backus, SM ;
Juneson, C ;
Ward, OP .
CANADIAN JOURNAL OF MICROBIOLOGY, 1997, 43 (12) :1172-1179
[10]   DEGRADATION OF HIGHLY CHLORINATED PCBS BY PSEUDOMONAS STRAIN LB400 [J].
BOPP, LH .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1986, 1 (01) :23-29