Defining Network Topologies that Can Achieve Biochemical Adaptation

被引:691
作者
Ma, Wenzhe [1 ,2 ,3 ]
Trusina, Ala [1 ,3 ]
El-Samad, Hana [1 ,4 ]
Lim, Wendell A. [1 ,5 ,6 ]
Tang, Chao [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA
[2] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
[3] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
BACTERIAL CHEMOTAXIS; POSITIVE FEEDBACK; ESCHERICHIA-COLI; ROBUSTNESS; MOTIFS; CELLS; TRANSDUCTION; SENSITIVITY; CALCIUM; DESIGN;
D O I
10.1016/j.cell.2009.06.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many signaling systems show adaptation-the ability to reset themselves after responding to a stimulus. We computationally searched all possible three-node enzyme network topologies to identify those that could perform adaptation. Only two major core topologies emerge as robust solutions: a negative feedback loop with a buffering node and an incoherent feedforward loop with a proportioner node. Minimal circuits containing these topologies are, within proper regions of parameter space, sufficient to achieve adaptation. Morecomplex circuits that robustly perform adaptation all contain at least one of these topologies at their core. This analysis yields a design table highlighting a finite set of adaptive circuits. Despite the diversity of possible biochemical networks, it may be common to find that only a finite set of core topologies can execute a particular function. These design rules provide a framework for functionally classifying complex natural networks and a manual for engineering networks. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
引用
收藏
页码:760 / 773
页数:14
相关论文
共 28 条
[1]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[2]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[3]   Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways [J].
Behar, Marcelo ;
Hao, Nan ;
Dohlman, Henrik G. ;
Elston, Timothy C. .
BIOPHYSICAL JOURNAL, 2007, 93 (03) :806-821
[4]  
BERG HC, 1972, NATURE, V239, P500, DOI 10.1038/239500a0
[5]   Interlinked fast and slow positive feedback loops drive reliable cell decisions [J].
Brandman, O ;
Ferrett, JE ;
Li, R ;
Meyer, T .
SCIENCE, 2005, 310 (5747) :496-498
[6]   Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective [J].
El-Samad, H ;
Goff, JP ;
Khammash, M .
JOURNAL OF THEORETICAL BIOLOGY, 2002, 214 (01) :17-29
[7]   Precise adaptation in bacterial chemotaxis through "assistance neighborhoods" [J].
Endres, Robert G. ;
Wingreen, Ned S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (35) :13040-13044
[8]   A case study of evolutionary computation of biochemical adaptation [J].
Francois, Paul ;
Siggia, Eric D. .
PHYSICAL BIOLOGY, 2008, 5 (02)
[9]  
GOLDBETER A, 1984, J BIOL CHEM, V259, P14441
[10]   Noise propagation and signaling sensitivity in biological networks: A role for positive feedback [J].
Hornung, Gil ;
Barkai, Naama .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (01) :0055-0061