Invalidity of Preissmann scheme for transcritical flow

被引:48
作者
Meselhe, EA
Holly, FM
机构
来源
JOURNAL OF HYDRAULIC ENGINEERING-ASCE | 1997年 / 123卷 / 07期
关键词
D O I
10.1061/(ASCE)0733-9429(1997)123:7(652)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Preissmann scheme, often referred to as the four-point scheme, is a bidiagonal implicit finite-difference method for solution of the de St. Venant equations. It is unconditionally stable and extremely robust, and thus is one of the most widely used methods in free-surface one-dimensional subcritical numerical modeling. The purpose of this technical note is to discuss the limitations of Preissmann scheme when applied to transcritical flow. In particular, the analysis presented shows that the Preissmann scheme cannot be used to simulate transcritical flow using the through (shock capturing) method.
引用
收藏
页码:652 / 655
页数:4
相关论文
共 13 条
[1]   THE 4TH GENERATION OF NUMERICAL MODELING IN HYDRAULICS [J].
ABBOTT, MB ;
LINDBERG, S ;
HAVINO, K .
JOURNAL OF HYDRAULIC RESEARCH, 1991, 29 (05) :581-600
[2]  
Abbott MB., 1979, Computational hydraulics: elements of the theory of free surface flows
[3]  
Cunge J.A., 1980, PRACTICAL ASPECTS CO, VI
[4]  
de St Venant B., 1871, ACAD SCI COMPTES RED, V73, P148
[5]   THE EFFECT OF THE DOWNSTREAM BOUNDARY-CONDITIONS IN THE LINEARIZED ST-VENANT EQUATIONS [J].
DOOGE, JCI ;
NAPIORKOWSKI, JJ .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1987, 40 :245-256
[6]   EXPLICIT NUMERICAL SCHEMES FOR UNSTEADY FREE-SURFACE FLOWS WITH SHOCKS [J].
FENNEMA, RJ ;
CHAUDHRY, MH .
WATER RESOURCES RESEARCH, 1986, 22 (13) :1923-1930
[7]  
HAVNO K, 1985, P INT C HYDR FLOODS
[8]  
JAMESON A, 1981, P 5 COMP FLUID DYN C
[9]   ON THE NUMERICAL MODELING OF SUPERCRITICAL-FLOW [J].
KUTIJA, V .
JOURNAL OF HYDRAULIC RESEARCH, 1993, 31 (06) :841-857
[10]  
MESELHE EA, 1994, THESIS U IOWA IOWA C