General helices and a theorem of Lancret

被引:155
作者
Barros, M
机构
关键词
general helix; theorem of Lancret; Hopf cylinder;
D O I
10.1090/S0002-9939-97-03692-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a theorem of Lancret for general helices in a 3-dimensional real-space-form which gives a relevant difference between hyperbolic and spherical geometries. Then we study two classical problems for general helices in the 3-sphere: the problem of solving natural equations and the closed curve problem.
引用
收藏
页码:1503 / 1509
页数:7
相关论文
共 12 条
[1]  
BARROS M, HELICOIDAL FILAMENTS
[2]  
Efimov N.V., 1947, USP MAT NAUK, V2, P193
[3]   ON THE DIFFERENTIAL GEOMETRY OF CLOSED SPACE CURVES [J].
FENCHEL, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (01) :44-54
[4]  
Lancret M.A., 1806, Memoires presentes a lInstitut des Sciences, Letters et arts par divers savants, V1, P416
[5]   LOCAL GEOMETRIC INVARIANTS OF INTEGRABLE EVOLUTION-EQUATIONS [J].
LANGER, J ;
PERLINE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1732-1737
[6]  
LANGER J, 1984, J DIFFER GEOM, V20, P1
[7]   KNOTTED ELASTIC CURVES IN R3 [J].
LANGER, J ;
SINGER, DA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (DEC) :512-520
[8]  
MILLMAN RS, 1977, ELEMENTS DIFFERENTIA, V56, P1208
[9]  
ONeill B, 1983, PURE APPL MATH
[10]   HOPF TORI IN S3 [J].
PINKALL, U .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :379-386