Formation of narrow dust rings in circumstellar debris disks

被引:37
作者
Besla, Gurtina
Wu, Yanqin
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada
关键词
circumstellar matter; hydrodynamics; infrared : stars; instabilities;
D O I
10.1086/509495
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Narrow dust rings observed around some young stars (e.g., HR 4796A) need to be confined. We present a possible explanation for the formation and confinement of such rings in optically thin circumstellar disks, without invoking shepherding planets. If an enhancement of dust grains (e.g., due to a catastrophic collision) occurs somewhere in the disk, photoelectric emission from the grains can heat the gas to temperatures well above that of the dust. The gas orbits with super (sub)-Keplerian speeds inward (outward) of the associated pressure maximum. This tends to concentrate the grains into a narrow region. The rise in dust density leads to further heating and a stronger concentration of grains. A narrow dust ring forms as a result of this instability. We show that this mechanism not only operates around early-type stars that have high UV fluxes, but also around stars with spectral types as late as K. This implies that this process is generic and may have occurred during the lifetime of each circumstellar disk. We examine the stringent upper limit on the H-2 column density in the HR 4796A disk and find it to be compatible with the presence of a significant amount of hydrogen gas in the disk. We also compute the O I and C II infrared line fluxes expected from various debris disks and show that these will be easily detectable by the upcoming Herschel mission. Herschel will be instrumental in detecting and characterizing gas in these disks.
引用
收藏
页码:528 / 540
页数:13
相关论文
共 83 条
[1]   Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties [J].
Alexander, R. D. ;
Clarke, C. J. ;
Pringle, J. E. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (01) :229-239
[2]   A resolved debris disk around the G2 V star HD 107146 [J].
Ardila, DR ;
Golimowski, DA ;
Krist, JE ;
Clampin, M ;
Williams, JP ;
Blakeslee, JP ;
Ford, HC ;
Hartig, GF ;
Illingworth, GD .
ASTROPHYSICAL JOURNAL, 2004, 617 (02) :L147-L150
[3]   Dynamical modeling of large scale asymmetries in the βPictoris dust disk [J].
Augereau, JC ;
Nelson, RP ;
Lagrange, AM ;
Papaloizou, JCB ;
Mouillet, D .
ASTRONOMY & ASTROPHYSICS, 2001, 370 (02) :447-455
[4]   DISCOVERY OF A SHELL AROUND ALPHA-LYRAE [J].
AUMANN, HH ;
GILLETT, FC ;
BEICHMAN, CA ;
DEJONG, T ;
HOUCK, JR ;
LOW, FJ ;
NEUGEBAUER, G ;
WALKER, RG ;
WESSELIUS, PR .
ASTROPHYSICAL JOURNAL, 1984, 278 (01) :L23-L27
[5]   IRAS OBSERVATIONS OF MATTER AROUND NEARBY STARS [J].
AUMANN, HH .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1985, 97 (596) :885-891
[6]  
Backman D. E., 1993, Protostars and Planets III, P1253
[7]   The spatial structure of the β Pictoris gas disk [J].
Brandeker, A ;
Liseau, R ;
Olofsson, G ;
Fridlund, M .
ASTRONOMY & ASTROPHYSICS, 2004, 413 (02) :681-691
[8]   Are giant planets forming around HR 4796A? [J].
Chen, CH ;
Kamp, I .
ASTROPHYSICAL JOURNAL, 2004, 602 (02) :985-992
[9]  
Currie T, 2003, ASTR SOC P, V294, P265
[10]   Models of the dust structures around Vega-excess stars [J].
Dent, WRF ;
Walker, HJ ;
Holland, WS ;
Greaves, JS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 314 (04) :702-712