Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities

被引:374
作者
Yan, Jun [1 ]
Fan, Zhuangjun [1 ]
Wei, Tong [1 ]
Cheng, Jie [2 ]
Shao, Bo [1 ]
Wang, Kai [1 ]
Song, Liping [1 ]
Zhang, Milin [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Minist Educ, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Peoples R China
[2] Res Inst Chem Def, Beijing 100083, Peoples R China
关键词
Manganese oxide; Microwave irradiation; Electrochemical properties; ELECTROCHEMICAL PROPERTIES; MANGANESE OXIDE; PSEUDOCAPACITIVE PERFORMANCE; ELECTRODES; NANOPARTICLES; CAPACITORS; STORAGE; ARRAYS; RUO2; AG;
D O I
10.1016/j.jpowsour.2009.06.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotube (CNT)/MnO2 composites are synthesized by reduction of potassium permanganate under microwave irradiation. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical properties are characterized by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). Birnessite-type MnO2 homogeneously coats on the surfaces of CNTs. For CNT-15%MnO2 composite, the specific capacitance based on MnO2 is 944 (85% of the theoretical capacitance) and 522 Fg(-1) at 1 and 500 mV s(-1). respectively. When the content of MnO2 reaches 57 wt%, the composites have the maximum power density (45.4 kW kg(-1), the energy density is 25.2 Wh kg(-1)). Therefore, CNT/MnO2 composites prepared by microwave irradiation are promising electrode materials in hybrid vehicle systems. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1202 / 1207
页数:6
相关论文
共 35 条
[1]   Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors [J].
An, Guimin ;
Yu, Ping ;
Xiao, Meijun ;
Liu, Zhimin ;
Miao, Zhenjiang ;
Ding, Kunlun ;
Mao, Lanqun .
NANOTECHNOLOGY, 2008, 19 (27)
[2]   One-step microwave preparation of well-defined and functionalized polymeric nanoparticles [J].
An, Zesheng ;
Tang, Wei ;
Hawker, Craig J. ;
Stucky, Galen D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (47) :15054-15055
[3]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[4]   Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J].
Beaudrouet, E. ;
La Salle, A. Le Gal ;
Guyomard, D. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1240-1248
[5]   Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP-NTf2 ionic liquid [J].
Chang, Jeng-Kuei ;
Huang, Chiung-Hui ;
Tsai, Wen-Ta ;
Deng, Ming-Jay ;
Sun, I. -Wen .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :435-440
[6]   A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance [J].
Chang, Jeng-Kuei ;
Hsu, Shih-Hsun ;
Tsai, Wen-Ta ;
Sun, I-Wen .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :676-680
[7]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[8]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE
[9]   High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J].
Fan, Zhen ;
Chen, Jinhua ;
Zhang, Bing ;
Liu, Bo ;
Zhong, Xinxian ;
Kuang, Yafei .
DIAMOND AND RELATED MATERIALS, 2008, 17 (11) :1943-1948
[10]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695