Differences in apparent pore sizes of low and high voltage-activated Ca2+ channels

被引:39
作者
Cataldi, M
Perez-Reyes, E
Tsien, RW
机构
[1] Stanford Univ, Sch Med, Dept Cellular & Mol Physiol, Beckman Ctr, Stanford, CA 94305 USA
[2] Univ Virginia, Dept Pharmacol, Charlottesville, VA 22908 USA
关键词
D O I
10.1074/jbc.M203922200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pore size is of considerable interest in voltage-gated Ca2+ channels because they exemplify a fundamental ability of certain ion channels: to display large pore diameter, but also great selectivity for their ion of choice. We determined the pore size of several voltage-dependent Ca2+ channels of known molecular composition with large organic cations as probes. T-type channels supported by the Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 subunits; L-type channels encoded by the Ca(V)1.2,beta(1), and alpha(2)delta(1) subunits; and R-type channels encoded by the Ca(V)2.3 and beta(3) subunits were each studied using a Xenopus oocyte expression system. The weak permeabilities to organic cations were resolved by looking at inward tails generated upon repolarization after a large depolarizing pulse. Large inward NH4+ currents and sizable methylammonium. and dimethylammonium currents were observed in all of the channels tested, whereas trimethylammonium permeated only through L- and R-type channels, and tetramethylammonium currents were observed only in L-type channels. Thus, our experiments revealed an unexpected heterogeneity in pore size among different Ca2+ channels, with L-type channels having the largest pore (effective diameter = 6.2 Angstrom), T-type channels having the tiniest pore (effective diameter = 5.1 Angstrom), and R-type channels having a pore size intermediate between these extremes. These findings ran counter to first-order expectations for these channels based simply on their degree of selectivity among inorganic cations or on the bulkiness of their acidic side chains at the locus of selectivity.
引用
收藏
页码:45969 / 45976
页数:8
相关论文
共 69 条
[1]   DIHYDROPYRIDINE-SENSITIVE LOW-THRESHOLD CALCIUM CHANNELS IN ISOLATED RAT HYPOTHALAMIC NEURONS [J].
AKAIKE, N ;
KOSTYUK, PG ;
OSIPCHUK, YV .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 412 :181-195
[2]   2 DISTINCT POPULATIONS OF CALCIUM CHANNELS IN A CLONAL LINE OF PITUITARY-CELLS [J].
ARMSTRONG, CM ;
MATTESON, DR .
SCIENCE, 1985, 227 (4682) :65-67
[3]   2 KINDS OF CALCIUM CHANNELS IN CANINE ATRIAL CELLS - DIFFERENCES IN KINETICS, SELECTIVITY AND PHARMACOLOGY [J].
BEAN, BP .
JOURNAL OF GENERAL PHYSIOLOGY, 1985, 86 (01) :1-30
[4]   NEGATIVE CONDUCTANCE CAUSED BY ENTRY OF SODIUM AND CESIUM IONS INTO POTASSIUM CHANNELS OF SQUID AXONS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 60 (05) :588-+
[5]   DEPOLARIZATION ELICITS 2 DISTINCT CALCIUM CURRENTS IN VERTEBRATE SENSORY NEURONS [J].
BOSSU, JL ;
FELTZ, A ;
THOMANN, JM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1985, 403 (04) :360-368
[6]  
Bourinet E, 1996, J NEUROSCI, V16, P4983
[7]   A LOW VOLTAGE-ACTIVATED, FULLY INACTIVATING CA-CHANNEL IN VERTEBRATE SENSORY NEURONS [J].
CARBONE, E ;
LUX, HD .
NATURE, 1984, 310 (5977) :501-502
[8]   SINGLE LOW-VOLTAGE-ACTIVATED CALCIUM CHANNELS IN CHICK AND RAT SENSORY NEURONS [J].
CARBONE, E ;
LUX, HD .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 386 :571-601
[9]   KINETICS AND SELECTIVITY OF A LOW-VOLTAGE-ACTIVATED CALCIUM CURRENT IN CHICK AND RAT SENSORY NEURONS [J].
CARBONE, E ;
LUX, HD .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 386 :547-570
[10]  
CASTELLANO A, 1993, J BIOL CHEM, V268, P12359