Modeling INK4/ARF tumor suppression in the mouse

被引:24
作者
Berger, Justin H. [1 ]
Bardeesy, Nabeel [1 ]
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Ctr Canc, Boston, MA 02114 USA
关键词
D O I
10.2174/156652407779940477
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The INK4/ARF locus encodes the p15(INK4B), p16(INK4A) and p14(ARF) tumor suppressor proteins whose loss of function is associated with the pathogenesis of many human cancers. Dissecting the relative contribution of these genes to growth control in vivo is complicated by their physical contiguity and the frequency of homozygous deletions that inactivate all three components of this locus. While genetically engineered mouse models provide a rigorous system for elucidating cancer gene function, there is some evidence to suggest there are cross-species differences in regulating tumor biology. Given the prevalence of mouse models in cancer research and the potential contribution of such models to preclinical studies, it is important determine to what degree the function of these critical tumor suppressors is conserved between organisms. In this review, we assess the relative biological roles of INK4A, INK4B and ARF in mice and humans with the aim of determining the faithfulness of mouse models and also of obtaining insights into the pattern of specific tumor types that are associated with germline and somatic mutations at components of this locus. We will discuss 1) the contribution of INK4A, INK4B and ARF to growth control in vitro in a series of cell types, 2) the in vivo phenotypes associated with germline loss of function of this locus and 3) the study of Ink4a and Arf in different cancer-specific mouse models.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 146 条
[1]   Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma [J].
Aguirre, AJ ;
Bardeesy, N ;
Sinha, M ;
Lopez, L ;
Tuveson, DA ;
Horner, J ;
Redston, MS ;
DePinho, RA .
GENES & DEVELOPMENT, 2003, 17 (24) :3112-3126
[2]   Cancer in rodents: Does it tell us about cancer in humans? [J].
Anisimov, VN ;
Ukraintseva, SV ;
Yashin, AL .
NATURE REVIEWS CANCER, 2005, 5 (10) :807-819
[3]  
[Anonymous], SEER CANC STAT REV 1
[4]   Germline mutations in HRAS proto-oncogene cause Costello syndrome [J].
Aoki, Y ;
Niihori, T ;
Kawame, H ;
Kurosawa, K ;
Filocamo, M ;
Kato, K ;
Suzuki, Y ;
Kure, S ;
Matsubara, Y .
NATURE GENETICS, 2005, 37 (10) :1038-1040
[5]   Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice [J].
Artandi, SE ;
Chang, S ;
Lee, SL ;
Alson, S ;
Gottlieb, GJ ;
Chin, L ;
DePinho, RA .
NATURE, 2000, 406 (6796) :641-645
[6]   Epidermal growth factor receptor and Ink4a/Arf:: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis [J].
Bachoo, RM ;
Maher, EA ;
Ligon, KL ;
Sharpless, NE ;
Chan, SS ;
You, MJJ ;
Tang, Y ;
DeFrances, J ;
Stover, E ;
Weissleder, R ;
Rowitch, DH ;
Louis, DN ;
DePinho, RA .
CANCER CELL, 2002, 1 (03) :269-277
[7]   Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse [J].
Bardeesy, N ;
Aguirre, AJ ;
Chu, GC ;
Cheng, KH ;
Lopez, LV ;
Hezel, AF ;
Feng, B ;
Brennan, C ;
Weissleder, R ;
Mahmood, U ;
Hanahan, D ;
Redston, MS ;
Chin, L ;
DePinho, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5947-5952
[8]   Obligate roles for p16Ink4a and p19Arf-p53 in the suppression of murine pancreatic neoplasia [J].
Bardeesy, N ;
Morgan, J ;
Sinha, M ;
Signoretti, S ;
Srivastava, S ;
Loda, M ;
Merlino, G ;
DePinho, RA .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (02) :635-643
[9]   Dual inactivation of RB and p53 pathways in RAS-induced melanomas [J].
Bardeesy, N ;
Bastian, BC ;
Hezel, A ;
Pinkel, D ;
DePinho, RA ;
Chin, L .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (06) :2144-2153
[10]   p14ARF links the tumour suppressors RB and p53 [J].
Bates, S ;
Phillips, AC ;
Clark, PA ;
Stott, F ;
Peters, G ;
Ludwig, RL ;
Vousden, KH .
NATURE, 1998, 395 (6698) :124-125