Polytopes associated to demazure modules of symmetrizable Kac-Moody algebras of rank two

被引:3
作者
Dehy, R [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
D O I
10.1006/jabr.1999.8208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let omega(1), omega(2), be the two fundamental weights of a symmetrizable Kac-Moody algebra g of rank two (hence necessarily affine or finite), and tau an element of the Weyl group. In this paper we construct polytopes P-tau(omega(1)), P-tau(omega(2)) subset of R-l(tau) and a linear map xi: R-l(tau) --> h* such that for any dominant weight lambda = k(1)omega(1) + k(2) w(2), we have Char E-tau(lambda) = e(lambda)Sigma e(xi(x)) where the sum is over all the integral paints x, of the polytope k(1)P(tau)(omega(1)) + k(2)P(tau)(omega(2)). Furthermore, we show that there exists a flat deformation of the Schubert variety S-tau into the toric variety defined by (C) 2000 Academic Press.
引用
收藏
页码:60 / 90
页数:31
相关论文
共 25 条
[1]   SCHUBERT VARIETIES AND DEMAZURE CHARACTER FORMULA [J].
ANDERSEN, HH .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :611-618
[2]  
BERENSTEIN A, 1988, J GEOM PHYS, V5, P453
[3]   Combinatorial results on Demazure modules [J].
Dehy, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09) :977-980
[4]   Lattice polytopes associated to certain Demazure modules of sln+1 [J].
Dehy, R ;
Yu, RWT .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 10 (02) :149-172
[5]   Combinatorial results on Demazure modules [J].
Dehy, R .
JOURNAL OF ALGEBRA, 1998, 205 (02) :505-524
[6]  
EHRHART E, 1962, CR HEBD ACAD SCI, V254, P616
[7]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[8]  
Fulton W., 2004, REPRESENT THEOR, V129
[9]  
Gonciulea N, 1996, CR ACAD SCI I-MATH, V322, P255
[10]  
Gonciulea N., 1996, Transform. Groups, V1, P215, DOI 10.1007/BF02549207