Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism

被引:82
作者
Smith, SA [1 ]
机构
[1] GlaxoSmithKline, Metab Sci Strategy, Harlow CM19 5AW, Essex, England
关键词
adipocyte differentiation; fatty acid oxidation; lipogenesis;
D O I
10.1042/BST0301086
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of ligand-activated nuclear transcription factors. Three PPAR subtypes, PPARalpha, PPARdelta (PPARbeta) and PPARgamma, have been described in mammals. The tissue distribution of PPARs is heterogeneous: PPARalpha is highly expressed in liver and skeletal muscle, PPARgamma is preferentially expressed in adipose tissues, and PPARdelta is expressed in most cell types with relative abundance. Unlike most receptors, PPARs show low ligand specificity, being activated by many long-chain saturated and unsaturated fatty acids, or by eicosanoids. PPARs are transcriptionally active as heterodimeric complexes with the retinoid X receptor and bind to specific recognition sequences in the regulatory region of target genes. Many PPAR-regulated genes encode proteins that regulate fatty acid oxidation and storage. Elucidation of the biological functions of PPARs has been aided by the development of PPAR-null mice and the identification of humans bearing PPAR mutations, together with the discovery of synthetic small-molecule ligands that selectively activate individual PPAR subtypes. Using these genetic and pharmacological approaches, it has been shown that PPARalpha predominantly regulates pathways of fatty acid oxidation, whereas PPARgamma modifies fatty acid synthesis and storage in adipose tissues. By reducing systemic fatty acid availability, thiazolidinedione PPARgamma activators regulate glucose metabolism and are now used clinically in the treatment of Type II diabetes. In summary, PPARs play a central role in the mechanisms that balance fatty acid oxidation and storage in the face of fluctuations of dietary fat intake and energy expenditure.
引用
收藏
页码:1086 / 1090
页数:5
相关论文
共 42 条
[1]   Activators of peroxisome proliferator-activated receptor γ have depot-specific effects on human preadipocyte differentiation [J].
Adams, M ;
Montague, CT ;
Prins, JB ;
Holder, JC ;
Smith, SA ;
Sanders, L ;
Digby, JE ;
Sewter, CP ;
Lazar, MA ;
Chatterjee, VKK ;
O'Rahilly, S .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (12) :3149-3153
[2]   Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells [J].
Aubert, J ;
Champigny, O ;
SaintMarc, P ;
Negrel, R ;
Collins, S ;
Ricquier, D ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 238 (02) :606-611
[3]   Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans - No alteration in adipose tissue of obese and NIDDM patients [J].
Auboeuf, D ;
Rieusset, J ;
Fajas, L ;
Vallier, P ;
Frering, V ;
Riou, JP ;
Staels, P ;
Auwerx, J ;
Laville, M ;
Vidal, H .
DIABETES, 1997, 46 (08) :1319-1327
[4]   Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension [J].
Barroso, I ;
Gurnell, M ;
Crowley, VEF ;
Agostini, M ;
Schwabe, JW ;
Soos, MA ;
Maslen, GL ;
Williams, TDM ;
Lewis, H ;
Schafer, AJ ;
Chatterjee, VKK ;
O'Rahilly, S .
NATURE, 1999, 402 (6764) :880-883
[5]   Cloning and characterization of a functional peroxisome proliferator activator receptor-γ-responsive element in the promoter of the CAP gene [J].
Baumann, CA ;
Chokshi, N ;
Saltiel, AR ;
Ribon, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (13) :9131-9135
[6]   Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat [J].
Braissant, O ;
Foufelle, F ;
Scotto, C ;
Dauca, M ;
Wahli, W .
ENDOCRINOLOGY, 1996, 137 (01) :354-366
[7]  
Carey DG, 2000, DIABETOLOGIA, V43, pA68
[8]   Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors [J].
DiRenzo, J ;
Soderstrom, M ;
Kurokawa, R ;
Ogliastro, MH ;
Ricote, M ;
Ingrey, S ;
Horlein, A ;
Rosenfeld, MG ;
Glass, CK .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (04) :2166-2176
[9]   Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2 [J].
Elbrecht, A ;
Chen, YL ;
Cullinan, CA ;
Hayes, N ;
Leibowitz, MD ;
Moller, DE ;
Berger, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 224 (02) :431-437
[10]   ZINC FINGERS - GILT BY ASSOCIATION [J].
EVANS, RM ;
HOLLENBERG, SM .
CELL, 1988, 52 (01) :1-3