Maximum performance at minimum cost in network synchronization

被引:128
作者
Nishikawa, Takashi [1 ]
Motter, Adilson E.
机构
[1] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
关键词
complex networks; synchronization; optimization;
D O I
10.1016/j.physd.2006.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which synchronization plays a significant role. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 52 条
[1]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Delays, connection topology, and synchronization of coupled chaotic maps [J].
Atay, FM ;
Jost, J ;
Wende, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :144101-1
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[5]   Synchronization in dynamical networks: Evolution along commutative graphs [J].
Boccaletti, S. ;
Hwang, D. -U. ;
Chavez, M. ;
Amann, A. ;
Kurths, J. ;
Pecora, L. M. .
PHYSICAL REVIEW E, 2006, 74 (01)
[6]  
BOCCALETTI S, COMMUNICATION
[7]  
Braess D, 1968, Unternehmensforschung, V12, P258, DOI [DOI 10.1007/BF01918335, 10.1007/BF01918335]
[8]   Entangled networks, synchronization, and optimal network topology -: art. no. 188701 [J].
Donetti, L ;
Hurtado, PI ;
Muñoz, MA .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[9]  
DONETTI L, CONDMAT0602351
[10]  
DURAND M, CONDMAT0608208