Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

被引:55
作者
Kageyama, M. [1 ]
Mignot, J. [2 ]
Swingedouw, D. [3 ]
Marzin, C. [1 ]
Alkama, R. [1 ,4 ]
Marti, O. [1 ]
机构
[1] CE Saclay, UVSQ, CNRS, CEA,UMR 1572,IPSL,LSCE, F-91191 Gif Sur Yvette, France
[2] Univ Paris 06, LOCEAN, F-75252 Paris 05, France
[3] CERFACS, F-31057 Toulouse, France
[4] CNRM, F-31057 Toulouse, France
关键词
PMIP2 COUPLED SIMULATIONS; SEA-SURFACE TEMPERATURES; NORTH-ATLANTIC; THERMOHALINE CIRCULATION; RAPID CHANGES; ARABIAN SEA; OCEAN; LATITUDE; MAXIMUM; EVENTS;
D O I
10.5194/cp-5-551-2009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC) as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv) resulting from successive similar to 0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv) AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv) are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the Indian monsoon weakening appears to be connected to the North Atlantic cooling via that of the troposphere over Eurasia. Such an understanding of these teleconnections and their timing could be useful for paleodata interpretation.
引用
收藏
页码:551 / 570
页数:20
相关论文
共 83 条
[1]   Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate [J].
Alkama, Ramdane ;
Kageyama, M. ;
Ramstein, G. ;
Marti, O. ;
Ribstein, P. ;
Swingedouw, D. .
CLIMATE DYNAMICS, 2008, 30 (7-8) :855-869
[2]   The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 [J].
Altabet, MA ;
Higginson, MJ ;
Murray, DW .
NATURE, 2002, 415 (6868) :159-162
[3]   One-to-one coupling of glacial climate variability in Greenland and Antarctica [J].
Barbante, C. ;
Barnola, J. -M. ;
Becagli, S. ;
Beer, J. ;
Bigler, M. ;
Boutron, C. ;
Blunier, T. ;
Castellano, E. ;
Cattani, O. ;
Chappellaz, J. ;
Dahl-Jensen, D. ;
Debret, M. ;
Delmonte, B. ;
Dick, D. ;
Falourd, S. ;
Faria, S. ;
Federer, U. ;
Fischer, H. ;
Freitag, J. ;
Frenzel, A. ;
Fritzsche, D. ;
Fundel, F. ;
Gabrielli, P. ;
Gaspari, V. ;
Gersonde, R. ;
Graf, W. ;
Grigoriev, D. ;
Hamann, I. ;
Hansson, M. ;
Hoffmann, G. ;
Hutterli, M. A. ;
Huybrechts, P. ;
Isaksson, E. ;
Johnsen, S. ;
Jouzel, J. ;
Kaczmarska, M. ;
Karlin, T. ;
Kaufmann, P. ;
Kipfstuhl, S. ;
Kohno, M. ;
Lambert, F. ;
Lambrecht, Anja ;
Lambrecht, Astrid ;
Landais, A. ;
Lawer, G. ;
Leuenberger, M. ;
Littot, G. ;
Loulergue, L. ;
Luethi, D. ;
Maggi, V. .
NATURE, 2006, 444 (7116) :195-198
[4]  
BERGER AL, 1978, J ATMOS SCI, V35, P2362, DOI [10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO
[5]  
2, 10.1016/0033-5894(78)90064-9]
[6]   Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates [J].
Bitz, C. M. ;
Chiang, J. C. H. ;
Cheng, W. ;
Barsugli, J. J. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (07)
[7]  
Bjerknes J., 1964, ADV GEOPHYS, V10, P1, DOI DOI 10.1016/S0065-2687(08)60005-9
[8]   Asynchrony of Antarctic and Greenland climate change during the last glacial period [J].
Blunier, T ;
Chappellaz, J ;
Schwander, J ;
Dallenbach, A ;
Stauffer, B ;
Stocker, TF ;
Raynaud, D ;
Jouzel, J ;
Clausen, HB ;
Hammer, CU ;
Johnsen, SJ .
NATURE, 1998, 394 (6695) :739-743
[9]   CORRELATIONS BETWEEN CLIMATE RECORDS FROM NORTH-ATLANTIC SEDIMENTS AND GREENLAND ICE [J].
BOND, G ;
BROECKER, W ;
JOHNSEN, S ;
MCMANUS, J ;
LABEYRIE, L ;
JOUZEL, J ;
BONANI, G .
NATURE, 1993, 365 (6442) :143-147
[10]   Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events [J].
Bout-Roumazeilles, V. ;
Nebout, N. Combourieu ;
Peyron, O. ;
Cortijo, E. ;
Landais, A. ;
Masson-Delmotte, V. .
QUATERNARY SCIENCE REVIEWS, 2007, 26 (25-28) :3197-3215