Synthesis characterization, and the platinum-catalyzed ring-opening polymerization and stereoselective dimerization of silicon-bridged [1]ferrocenophanes with acetylenic substituents

被引:44
作者
Berenbaum, A [1 ]
Lough, AJ [1 ]
Manners, I [1 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
关键词
D O I
10.1021/om0204078
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Reaction of the lithium acetylides LiCdropCR (R = Ph, nBu) with the silicon-bridged [1]ferrocenophane Fe(eta-C5H4)(2)Si(Me)Cl (2a) at -78 degreesC was found to result in selective substitution of Cl., forming sila[1]ferrocenophanes with acetylenic substituentg Fe(eta-C5H4)(2)- Si(Me)CdropCR (4, R = Ph; 5, R = nBu). A similar reaction of sila[1]ferrocenophane Fe(eta-C5H4)(2)SiCl2 (2b) with 2 equiv of LiCdropCPh resulted in the substitution of both Cl atoms, forming Fe(eta-C5H4)(2)Si(CdropCPh)(2) (6). Transition metal-catalyzed ring-opening polymerization of monomers 4, 5, and 6 resulted in the formation of high molecular weight (M-n > 10(4)-10(5)) polyferrocenylsilanes with acetylenic substituents, [Fe(eta-C5H4)(2)Si(Me)CdropCR](n) (7, R = Ph; 8, R = nBu) and [Fe(eta-C5H4)(2)Si(CdropCPh)(2)](n) (9), respectively. The cyclic dimer [Fe(eta-C5H4)(2)Si(Me)CdropCPh](2) (10) Was isolated from the polymerization mixture derived from 4. The dimer was shown to exist in the cis configuration by single-crystal X-ray diffraction. Detailed studies on the polymerization of 4 have shown that the ratio of high polymer 7 to cyclic dimer 10 formed in the reaction is highly solvent and concentration dependent. Pyrolysis of polymers, 7 and 8 during thermogravimetric analysis (TGA) studies have resulted in the formation of black magnetic ceramics in the highest yields found to date for uncrosslinked polyferrocenylsilane homopolymers (2 h, 900 degreesC; 7, 81%; 8, 61%).
引用
收藏
页码:4415 / 4424
页数:10
相关论文
共 61 条
[1]  
Antipin MY, 2000, CAN J CHEM, V78, P1511
[2]  
ARCHER RD, 2001, INORGANIC ORGANOMETA
[3]   Molecular mechanics study of oligomeric models for poly(ferrocenylsilanes) using the extensible systematic forcefield (ESFF) [J].
Barlow, S ;
Rohl, AL ;
Shi, SG ;
Freeman, CM ;
OHare, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (32) :7578-7592
[4]   Electronic structure of strained silicon- and sulfur-bridged [1]ferrocenophanes and an analogous dicarbon-bridged [2]ferrocenophane: An investigation by photoelectron spectroscopy and density-functional theory [J].
Barlow, S ;
Drewitt, MJ ;
Dijkstra, T ;
Green, JC ;
O'Hare, D ;
Whittingham, C ;
Wynn, HH ;
Gates, DP ;
Manners, I ;
Nelson, JM ;
Pudelski, JK .
ORGANOMETALLICS, 1998, 17 (10) :2113-2120
[5]  
BARTOLE A, UNPUB
[6]  
BERENBAUM A, UNPUB
[7]   POLYFERROCENYLENE PERSULFIDES [J].
BRANDT, PF ;
RAUCHFUSS, TB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (05) :1926-1927
[8]   Optically active transition-metal complexes Part 124. Chiral 1-phospha[1]ferrocenophanes and 1,12-diphospha[1.1]ferrocenophanes - synthesis, characterization and ring-opening polymerization [J].
Brunner, H ;
Klankermayer, J ;
Zabel, M .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2000, 601 (02) :211-219
[9]   X-ray structure of a novel tetrachloro[1.1]silaferrocenophane.: Hydrolysis-polycondensation of poly(ferrocenyldichlorosilane).: Electrochemical studies [J].
Calleja, G ;
Carré, F ;
Cerveau, G .
ORGANOMETALLICS, 2001, 20 (20) :4211-4215
[10]   Organometallic polymers based on S-S and Se-Se linked n-butylferrocenes [J].
Compton, DL ;
Brandt, PF ;
Rauchfuss, TB ;
Rosenbaum, DF ;
Zukoski, CF .
CHEMISTRY OF MATERIALS, 1995, 7 (12) :2342-2349