Approximations of functions by a multilayer perceptron: a new approach

被引:109
作者
Attali, JG [1 ]
Pages, G [1 ]
机构
[1] UNIV PARIS 06,PROBABIL LAB,URA 224,F-75252 PARIS 05,FRANCE
关键词
one-hidden layer perceptron; function approximation; hidden layer design; derivatives approximation; uniform approximation on compact sets; L-q-approximation; Bernstein multinomial polynomials;
D O I
10.1016/S0893-6080(97)00010-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a radically elementary proof of the universal approximation property of the one-hidden layer perceptron based on the Taylor expansion and the Vandermonde determinant. It works for both L-q and uniform approximation on compact sets. This approach naturally yields some bounds for the design of the hidden layer and convergence results (including some rates) for the derivatives. A partial answer to Hornik's conjecture on the universality of the bias is proposed. An extension to vector valued functions is also carried out. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1069 / 1081
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
DEVORE RA, 1994, MANUSCRIPTA MATH, V63, P469
[4]  
ELLACOTT SW, 1994, ACTA NUMERICA, P145
[5]   SOME NEW RESULTS ON NEURAL-NETWORK APPROXIMATION [J].
HORNIK, K .
NEURAL NETWORKS, 1993, 6 (08) :1069-1072
[6]   UNIVERSAL APPROXIMATION OF AN UNKNOWN MAPPING AND ITS DERIVATIVES USING MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1990, 3 (05) :551-560
[7]   DEGREE OF APPROXIMATION RESULTS FOR FEEDFORWARD NETWORKS APPROXIMATING UNKNOWN MAPPINGS AND THEIR DERIVATIVES [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H ;
AUER, P .
NEURAL COMPUTATION, 1994, 6 (06) :1262-1275
[8]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[9]   MULTILAYER FEEDFORWARD NETWORKS WITH A NONPOLYNOMIAL ACTIVATION FUNCTION CAN APPROXIMATE ANY FUNCTION [J].
LESHNO, M ;
LIN, VY ;
PINKUS, A ;
SCHOCKEN, S .
NEURAL NETWORKS, 1993, 6 (06) :861-867
[10]  
LIGHT W, 1992, APPROXIMATION THEORY