Functional coupling shows stronger stimulus dependency for fast oscillations than for low-frequency components in striate cortex of awake monkey

被引:72
作者
Frien, A [1 ]
Eckhorn, R [1 ]
机构
[1] Univ Marburg, Dept Phys, Grp Neurophys, D-35032 Marburg, Germany
关键词
gamma-oscillations; object-coding; signal coherence; texture surface;
D O I
10.1046/j.1460-9568.2000.00026.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
It has been argued that coupling among the neural signals activated by a visual object supports binding of local features into a coherent object perception. During visual stimulation by a grating texture we studied functional coupling by calculating spectral coherence among pairs of signals recorded in the striate cortex of awake monkeys. Multiple unit activity (MUA) and local field potentials (LFP, 1-140 Hz) were extracted from seven parallel broad band recordings. Spectral coherence was dominated by high-frequency oscillations in the range 35-50 Hz and often by additional low-frequency components (0-12 Hz). Functional coupling among separate cortical sites was more stimulus specific for MUA than for LFP: MUA coherence at high and low frequencies depended highly significantly on: (i) the similarity of the preferred orientations at the two sites-the more similar the higher the coherence; (ii) the orientation of the stimulus grating - with highest coherence at half angle between the preferred orientations at the two sites; (iii) cortical distance - coherence decreases to noise levels at similar to 3 mm (MUA) and 6 mm (LFP). Coherence of fast oscillations did not depend on the degree of coaxiality of the orientation-sensitive receptive fields, whereas low frequencies showed significant dependency. This indicates that different frequency components can engage different coupling networks in the striate cortex which probably support different coding tasks. Changes in average oscillation frequency with stimulus orientation were highly significant for fast oscillations while there was no dependency for low frequencies. Finally, stimulus-related spectral power and coherence of fast oscillations were considerably higher than of low frequency components. Fast oscillations may therefore contribute more to feature binding and coding of object continuity than low-frequency components, at least for texture surfaces as analysed here.
引用
收藏
页码:1466 / 1478
页数:13
相关论文
共 54 条
[1]   Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains [J].
Brody, CD .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (06) :3345-3351
[2]   LATERAL COHERENCE OF THE ELECTROCORTICOGRAM - A NEW MEASURE OF BRAIN SYNCHRONY [J].
BULLOCK, TH ;
MCCLUNE, MC .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1989, 73 (06) :479-498
[3]   Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits for linking field models [J].
Eckhorn, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :464-479
[4]  
Eckhorn R., 1999, Society for Neuroscience Abstracts, V25, P677
[5]   Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex [J].
Eckhorn, R. ;
Reitboeck, H. J. ;
Arndt, M. ;
Dicke, P. .
NEURAL COMPUTATION, 1990, 2 (03) :293-307
[6]   HIGH-FREQUENCY (60-90 HZ) OSCILLATIONS IN PRIMARY VISUAL-CORTEX OF AWAKE MONKEY [J].
ECKHORN, R ;
FRIEN, A ;
BAUER, R ;
WOELBERN, T ;
KEHR, H .
NEUROREPORT, 1993, 4 (03) :243-246
[7]   COHERENT OSCILLATIONS - A MECHANISM OF FEATURE LINKING IN THE VISUAL-CORTEX - MULTIPLE ELECTRODE AND CORRELATION ANALYSES IN THE CAT [J].
ECKHORN, R ;
BAUER, R ;
JORDAN, W ;
BROSCH, M ;
KRUSE, W ;
MUNK, M ;
REITBOECK, HJ .
BIOLOGICAL CYBERNETICS, 1988, 60 (02) :121-130
[8]   CONTRAST SENSITIVITY AND SPATIAL-FREQUENCY RESPONSE OF PRIMATE CORTICAL-NEURONS IN AND AROUND THE CYTOCHROME-OXIDASE BLOBS [J].
EDWARDS, DP ;
PURPURA, KP ;
KAPLAN, E .
VISION RESEARCH, 1995, 35 (11) :1501-1523
[9]   INTERHEMISPHERIC SYNCHRONIZATION OF OSCILLATORY NEURONAL RESPONSES IN CAT VISUAL-CORTEX [J].
ENGEL, AK ;
KONIG, P ;
KREITER, AK ;
SINGER, W .
SCIENCE, 1991, 252 (5009) :1177-1179
[10]   STIMULUS-DEPENDENT NEURONAL OSCILLATIONS IN CAT VISUAL-CORTEX - INTERCOLUMNAR INTERACTION AS DETERMINED BY CROSS-CORRELATION ANALYSIS [J].
ENGEL, AK ;
KONIG, P ;
GRAY, CM ;
SINGER, W .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1990, 2 (07) :588-606