AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals

被引:231
作者
Yu, H [1 ]
Xu, YF [1 ]
Tan, EL [1 ]
Kumar, PP [1 ]
机构
[1] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117543, Singapore
关键词
D O I
10.1073/pnas.212624599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The most dramatic phase change in plants is the transition from vegetative to reproductive growth. This flowering process is regulated by several interacting pathways that monitor both the developmental state of the plants and environmental cues such as light and temperature. The flowering-time genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), together with the floral meristem identity gene LEAFY (LFY), are three essential regulators integrating floral signals from multiple pathways in Arabidopsis thaliana. Part of the crosstalk among these genes is mediated by a putative transcription factor, AGAMOUS-LIKE 24 (AGL24). This gene is gradually activated in shoot apical meristems during the floral transition and later located in the whole zone of both inflorescence and floral meristems. Loss and reduction of AGL24 activity by double-stranded RNA-mediated interference result in late flowering, whereas constitutive overexpression of AGL24 causes precocious flowering. The correlation between the level of AGL24 accumulation and the alteration of flowering time suggests that AGL24 is a dosage-dependent flowering promoter. Analysis of AGL24 expression in various flowering-time mutants shows that it is regulated in several floral inductive pathways. Further genetic analyses of epistasis indicate that AGL24 may act downstream of SOC1 and upstream of LFY.
引用
收藏
页码:16336 / 16341
页数:6
相关论文
共 34 条
[1]   Transition from vegetative to reproductive phase [J].
Araki, T .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (01) :63-68
[2]   Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter [J].
Blázquez, MA ;
Green, R ;
Nilsson, O ;
Sussman, MR ;
Weigel, D .
PLANT CELL, 1998, 10 (05) :791-800
[3]  
Blazquez MA, 1997, DEVELOPMENT, V124, P3835
[4]   A MADS domain gene involved in the transition to flowering in Arabidopsis [J].
Borner, R ;
Kampmann, G ;
Chandler, J ;
Gleissner, R ;
Wisman, E ;
Apel, K ;
Melzer, S .
PLANT JOURNAL, 2000, 24 (05) :591-599
[5]   Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J].
Chuang, CF ;
Meyerowitz, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4985-4990
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]  
Ferrándiz C, 2000, DEVELOPMENT, V127, P725
[8]   Molecular cloning of SVP:: a negative regulator of the floral transition in Arabidopsis [J].
Hartmann, U ;
Höhmann, S ;
Nettesheim, K ;
Wisman, E ;
Saedler, H ;
Huijser, P .
PLANT JOURNAL, 2000, 21 (04) :351-360
[9]   Activation tagging of the floral inducer FT [J].
Kardailsky, I ;
Shukla, VK ;
Ahn, JH ;
Dagenais, N ;
Christensen, SK ;
Nguyen, JT ;
Chory, J ;
Harrison, MJ ;
Weigel, D .
SCIENCE, 1999, 286 (5446) :1962-1965
[10]   A pair of related genes with antagonistic roles in mediating flowering signals [J].
Kobayashi, Y ;
Kaya, H ;
Goto, K ;
Iwabuchi, M ;
Araki, T .
SCIENCE, 1999, 286 (5446) :1960-1962