Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants

被引:58
作者
Hibino, T
Waditee, R
Araki, E
Ishikawa, H
Aoki, K
Tanaka, Y
Takabe, T [1 ]
机构
[1] Meijo Univ, Inst Res, Tenpaku Ku, Nagoya, Aichi 4688502, Japan
[2] Meijo Univ, Grad Sch Environm & Human Sci, Nagoya, Aichi 4688502, Japan
关键词
D O I
10.1074/jbc.M205965200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, the first step in betaine synthesis was shown to be catalyzed by a novel Rieske-type iron-sulfur enzyme, choline monooxygenase (CMO). Although CMO so far has been found only in Chenopodiaceae and Amaranthaceae, the recent genome sequence suggests the presence of a CMO-Iike gene in Arabidopsis, a betaine non-accumulating plant. Here, we examined the functional properties of CMO expressed in Escherichia coli, cyanobacterium, and Arabidopsis thaliana. We found that E. coli cells in which choline dehydrogenase (CDH) was replaced with spinach CMO accumulate betaine and complement the salt-sensitive phenotype of the CDH-deleted E. coli mutant. Changes of Cys-181 in spinach CMO to Ser, Thr, and Ala and His-287 to Gly, Val, and Ala abolished the accumulation of betaine. The Arabidopsis CMO-like gene was transcribed in Arabidopsis, but its protein was not detected. When the Arabidopsis CMO-like gene was expressed in E. coli, the protein was detected but was found not to promote betaine sysnthesis. Overexpression of spinach CMO in E. coli, Synechococcus sp. PCC7942, and Arabidopsis conferred resistance to abiotic stress. These facts clearly indicate that CMO, but not the CMO-Iike protein, could oxidize choline and that Cys-181 and His-287 are involved in the binding of Fe-S cluster and Fe, respectively.
引用
收藏
页码:41352 / 41360
页数:9
相关论文
共 36 条
[1]   Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: Characterization of the gbsAB genes [J].
Boch, J ;
Kempf, B ;
Schmid, R ;
Bremer, E .
JOURNAL OF BACTERIOLOGY, 1996, 178 (17) :5121-5129
[2]   ASSAY, PURIFICATION, AND PARTIAL CHARACTERIZATION OF CHOLINE MONOOXYGENASE FROM SPINACH [J].
BURNET, M ;
LAFONTAINE, PJ ;
HANSON, AD .
PLANT PHYSIOLOGY, 1995, 108 (02) :581-588
[3]  
Butler CS, 1997, ADV MICROB PHYSIOL, V38, P47
[4]   Substrate binding site of naphthalene 1,2-dioxygenase: Functional implications of indole binding [J].
Carredano, E ;
Karlsson, A ;
Kauppi, B ;
Choudhury, D ;
Parales, RE ;
Parales, JV ;
Lee, K ;
Gibson, DT ;
Eklund, H ;
Ramaswamy, S .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (02) :701-712
[5]   HUMAN ALDEHYDE DEHYDROGENASE E3 ISOZYME IS A BETAINE ALDEHYDE DEHYDROGENASE [J].
CHERN, MK ;
PIETRUSZKO, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 213 (02) :561-568
[6]   Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress [J].
Deshnium, P ;
Los, DA ;
Hayashi, H ;
Mustardy, L ;
Murata, N .
PLANT MOLECULAR BIOLOGY, 1995, 29 (05) :897-907
[7]   PURIFICATION AND CHARACTERIZATION OF OSMOREGULATORY BETAINE ALDEHYDE DEHYDROGENASE OF ESCHERICHIA-COLI [J].
FALKENBERG, P ;
STROM, AR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1034 (03) :253-259
[8]   Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress [J].
Hayashi, H ;
Alia ;
Mustardy, L ;
Deshnium, P ;
Ida, M ;
Murata, N .
PLANT JOURNAL, 1997, 12 (01) :133-142
[9]   Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. [J].
Hibino, T ;
Meng, YL ;
Kawamitsu, Y ;
Uehara, N ;
Matsuda, N ;
Tanaka, Y ;
Ishikawa, H ;
Baba, S ;
Takabe, T ;
Wada, K ;
Ishii, T ;
Takabe, T .
PLANT MOLECULAR BIOLOGY, 2001, 45 (03) :353-363
[10]   Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine [J].
Holmström, KO ;
Somersalo, S ;
Mandal, A ;
Palva, TE ;
Welin, B .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (343) :177-185