Dynamics and convergence rate of ordinal comparison of stochastic discrete-event systems

被引:23
作者
Xie, XL
机构
[1] INRIA, 57070 Metz
关键词
D O I
10.1109/9.566675
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses ordinal comparison in the simulation of discrete-event systems. It examines dynamic behaviors of ordinal comparison in a fairly general framework. It proves that for regenerative systems, the probability of obtaining a desired solution using ordinal comparison approaches converges at exponential rate, while the variances of the performance measures converge at best at rate O(1/t(2)), where t is the simulation time. Heuristic arguments are provided to explain that exponential convergence holds for general systems.
引用
收藏
页码:586 / 590
页数:5
相关论文
共 13 条
[1]   QUEUING MODELS FOR SYSTEMS WITH SYNCHRONIZATION CONSTRAINTS [J].
BACCELLI, F ;
MAKOWSKI, AM .
PROCEEDINGS OF THE IEEE, 1989, 77 (01) :138-161
[2]  
BARNHART CM, 1994, IEEE DECIS CONTR P, P2645, DOI 10.1109/CDC.1994.411546
[3]  
CHEN CH, 1993, UNPUB CONFIDENCE LEV
[4]  
DAI L, IN PRESS J OPTIMIZAT
[5]  
Dembo A., 1993, Large deviations techniques and applications
[6]  
DENG M, 1992, P WINT SIM C
[7]  
GLASSERMAN P., 1991, Gradient Estimation via Perturbation Analysis
[8]  
Glasserman P., 1994, PROBAB ENG INF SCI, V8, P309
[9]  
HEIDELBERGER P, 1980, 8397 IBM RC
[10]  
Ho Y.-C., 1992, Discrete Event Dynamic Systems, V2, P61