Population dynamics of interacting spiking neurons

被引:186
作者
Mattia, M [1 ]
Del Giudice, P [1 ]
机构
[1] Gr Coll Roma 1, Ist Super Sanita, Phys Lab, Ist Nazl Fis Nucl, I-00161 Rome, Italy
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 05期
关键词
D O I
10.1103/PhysRevE.66.051917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dynamical equation is derived for the spike emission rate nu(t) of a homogeneous network of integrate-and-fire (IF) neurons in a mean-field theoretical framework, where the activity of the single cell depends both on the mean afferent current (the "field") and on its fluctuations. Finite-size effects are taken into account, by a stochastic extension of the dynamical equation for the nu; their effect on the collective activity is studied in detail. Conditions for the local stability of the collective activity are shown to be naturally and simply expressed in terms of (the slope of) the single neuron, static, current-to-rate transfer function. In the framework of the local analysis, we studied the spectral properties of the time-dependent collective activity of the finite network in an asynchronous state; finite-size fluctuations act as an ongoing self-stimulation, which probes the spectral structure of the system on a wide frequency range. The power spectrum of nu exhibits modes ranging from very high frequency (depending on spike transmission delays), which are responsible for instability, to oscillations at a few Hz, direct expression of the diffusion process describing the population dynamics. The latter "diffusion" slow modes do not contribute to the stability conditions. Their characteristic times govern the transient response of the network; these reaction times also exhibit a simple dependence on the slope of the neuron transfer function. We speculate on the possible relevance of our results for the change in the characteristic response time of a neural population during the learning process which shapes the synaptic couplings, thereby affecting the slope of the transfer function. There is remarkable agreement of the theoretical predictions with simulations of a network of IF neurons with a constant leakage term for the membrane potential.
引用
收藏
页数:19
相关论文
共 35 条
[1]   ASYNCHRONOUS STATES IN NETWORKS OF PULSE-COUPLED OSCILLATORS [J].
ABBOTT, LF ;
VANVREESWIJK, C .
PHYSICAL REVIEW E, 1993, 48 (02) :1483-1490
[2]   QUANTITATIVE STUDY OF ATTRACTOR NEURAL NETWORK RETRIEVING AT LOW SPIKE RATES .1. SUBSTRATE SPIKES, RATES AND NEURONAL GAIN [J].
AMIT, DJ ;
TSODYKS, MV .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1991, 2 (03) :259-273
[3]   Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex [J].
Amit, DJ ;
Brunel, N .
CEREBRAL CORTEX, 1997, 7 (03) :237-252
[4]   Dynamics of a recurrent network of spiking neurons before and following learning [J].
Amit, DJ ;
Brunel, N .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1997, 8 (04) :373-404
[5]  
AMIT DJ, 1995, BEHAV BRAIN SCI, V18, P617, DOI 10.1017/S0140525X00040164
[6]  
[Anonymous], 1988, INTRO THEORETICAL NE
[7]   Fast global oscillations in networks of integrate-and-fire neurons with low firing rates [J].
Brunel, N ;
Hakim, V .
NEURAL COMPUTATION, 1999, 11 (07) :1621-1671
[8]   Effects of synaptic noise and filtering on the frequency response of spiking neurons [J].
Brunel, N ;
Chance, FS ;
Fourcaud, N ;
Abbott, LF .
PHYSICAL REVIEW LETTERS, 2001, 86 (10) :2186-2189
[9]   Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons [J].
Brunel, N .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 8 (03) :183-208
[10]  
Dayan P., 2001, THEORETICAL NEUROSCI