Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery

被引:305
作者
Aimetti, Alex A. [1 ]
Machen, Alexandra J. [1 ]
Anseth, Kristi S. [1 ,2 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
Hydrogel; Drug delivery; Photopolymerization; Inflammation; DEGRADABLE NETWORKS; SENSITIVE HYDROGELS; DRUG-DELIVERY; PEG HYDROGELS; RELEASE; POLYANHYDRIDES; PHOTOENCAPSULATION; FORMULATIONS; MATRICES; BEHAVIOR;
D O I
10.1016/j.biomaterials.2009.07.043
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Degradable hydrogels have been extensively used in biomedical applications such as drug delivery, and recent interest has grown in hydrogels that degrade in recognition of a cellular response. This contribution describes a poly(ethylene glycol) (PEG) hydrogel platform with human neutrophil elastase (HNE) sensitive peptide cross-links formed using thiol-ene photopolymerization rendering the gel degradable at sites of inflammation. Further, protein therapeutics can be physically entrapped within the network and selectively released upon exposure to HNE. HNE-responsive hydrogels exhibited surface erosion where the degradation kinetics was influenced by changes in peptide k(cat), concentration of HNE, and concentration of peptide within the gel. Using this platform, we were able to achieve controlled, zero-order release of bovine serum albumin (BSA) in the presence of HNE, and release was arrested in the absence of HNE. To further exploit the advantages of surface eroding delivery systems, a smaller protein (carbonic anhydrase) was delivered at the same rate as BSA and only dependent on gel formulation and environmental conditions. Also, protein release was predicted from a 3-layered hydrogel device using mass loss data. Lastly, the bioactivity of lysozyme was maintained above 90% following the exposure to thiol-ene photopolymerization conditions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6048 / 6054
页数:7
相关论文
共 39 条
[1]   Human Neutrophil Elastase Responsive Delivery from Poly(ethylene glycol) Hydrogels [J].
Aimetti, Alex A. ;
Tibbitt, Mark W. ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2009, 10 (06) :1484-1489
[2]   Mechanical properties of hydrogels and their experimental determination [J].
Anseth, KS ;
Bowman, CN ;
BrannonPeppas, L .
BIOMATERIALS, 1996, 17 (17) :1647-1657
[3]   Rational design of a potent, long-lasting form of interferon:: A 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C [J].
Bailon, P ;
Palleroni, A ;
Schaffer, CA ;
Spence, CL ;
Fung, WJ ;
Porter, JE ;
Ehrlich, GK ;
Pan, W ;
Xu, ZX ;
Modi, MW ;
Farid, A ;
Berthold, W .
BIOCONJUGATE CHEMISTRY, 2001, 12 (02) :195-202
[4]   Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery [J].
Bromberg, LE ;
Ron, ES .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 31 (03) :197-221
[5]   Encapsulating Chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production [J].
Bryant, SJ ;
Bender, RJ ;
Durand, KL ;
Anseth, KS .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 86 (07) :747-755
[6]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[7]   A review of photocrosslinked polyanhydrides: in situ forming degradable networks [J].
Burkoth, AK ;
Anseth, KS .
BIOMATERIALS, 2000, 21 (23) :2395-2404
[8]   CORRELATION BETWEEN MESH SIZE AND EQUILIBRIUM DEGREE OF SWELLING OF POLYMERIC NETWORKS [J].
CANAL, T ;
PEPPAS, NA .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1989, 23 (10) :1183-1193
[9]   Mechanisms of disease: Cytokine pathways and joint inflammation in rheumatoid arthritis. [J].
Choy, EHS ;
Panayi, GS .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (12) :907-916
[10]   Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared [J].
Cramer, NB ;
Bowman, CN .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (19) :3311-3319