Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction

被引:622
作者
Morino, Katsutaro
Petersen, Kitt Falk
Shulman, Gerald I.
机构
[1] Yale Univ, Sch Med, Howard Hughes Med Inst, Dept Internal Med, New Haven, CT 06536 USA
[2] Yale Univ, Sch Med, Howard Hughes Med Inst, Dept Cellular & Mol Physiol, New Haven, CT 06536 USA
关键词
D O I
10.2337/db06-S002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent studies using magnetic resonance spectroscopy have shown that decreased insulin-stimulated muscle glycogen synthesis due to a defect in insulin-stimulated glucose transport activity is a major factor in the pathogenesis of type 2 diabetes. The molecular mechanism underlying defective insulin-stimulated glucose transport activity can be attributed to increases in intramyocellular lipid metabolites such as fatty acyl CoAs and diacylglycerol, which in turn activate a serine/threonine kinase cascade, thus leading to defects in insulin signaling through Ser/Thr phosphorylation of insulin receptor substrate (IRS)-1. A similar mechanism is also observed in hepatic insulin resistance associated with nonalcoholic fatty liver, which is a common feature of type 2 diabetes, where increases in hepatocellular diacylglycerol content activate protein kinase C-epsilon, leading to reduced insulin-stimulated tyrosine phosphorylation of IRS-2. More recently, magnetic resonance spectroscopy studies in healthy lean elderly subjects and healthy lean insulin-resistant offspring of parents with type 2 diabetes have demonstrated that reduced mitochondrial function may predispose these individuals to intramyocellular lipid accumulation and insulin resistance. Further analysis has found that the reduction in mitochondrial function in the insulin-resistant offspring can be mostly attributed to reductions in mitochondrial density. By elucidating the cellular and molecular mechanisms responsible for insulin resistance, these studies provide potential new targets for the treatment and prevention of type 2 diabetes.
引用
收藏
页码:S9 / S15
页数:7
相关论文
共 90 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action [J].
Aguirre, V ;
Werner, ED ;
Giraud, J ;
Lee, YH ;
Shoelson, SE ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1531-1537
[3]   Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice [J].
Akimoto, T ;
Ribar, TJ ;
Williams, RS ;
Yan, Z .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (05) :C1311-C1319
[4]   Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic β-cells [J].
Andreozzi, F ;
D'Alessandris, C ;
Federici, M ;
Laratta, E ;
Del Guerra, S ;
Del Prato, S ;
Marchetti, P ;
Lauro, R ;
Perticone, F ;
Sesti, G .
ENDOCRINOLOGY, 2004, 145 (06) :2845-2857
[5]   TRIPOD (TRoglitazone in the Prevention of Diabetes): A randomized, placebo-controlled trial of troglitazone in women with prior gestational diabetes mellitus [J].
Azen, SP ;
Peters, RK ;
Berkowitz, K ;
Kjos, S ;
Xiang, A ;
Buchanan, TA .
CONTROLLED CLINICAL TRIALS, 1998, 19 (02) :217-231
[6]   Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action [J].
Bard-Chapeau, EA ;
Hevener, AL ;
Long, SN ;
Zhang, EE ;
Olefsky, JM ;
Feng, GS .
NATURE MEDICINE, 2005, 11 (05) :567-571
[7]  
BERGERON R, 2001, AM J PHYSIOL-CELL PH, V281, pE3140
[8]   Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes [J].
Bouzakri, K ;
Roques, M ;
Gual, P ;
Espinosa, S ;
Guebre-Egziabher, F ;
Riou, JP ;
Laville, M ;
Le Marchand-Brustel, Y ;
Tanti, JF ;
Vidal, H .
DIABETES, 2003, 52 (06) :1319-1325
[9]   Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle [J].
Brehm, A ;
Krssak, M ;
Schmid, AI ;
Nowotny, P ;
Waldhäusl, W ;
Roden, M .
DIABETES, 2006, 55 (01) :136-140
[10]   Five-hour fatty acid elevation increases muscle lipids and impairs glycogen synthesis in the rat [J].
Chalkley, SM ;
Hettiarachchi, M ;
Chisholm, DJ ;
Kraegen, EW .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1998, 47 (09) :1121-1126