Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane

被引:300
作者
Stein, Alexander T.
Ufret-Vincenty, Carmen A.
Hua, Li
Santana, Luis F.
Gordon, Sharona E. [1 ]
机构
[1] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA
[2] Univ Washington, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA
关键词
D O I
10.1085/jgp.200609576
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85 beta subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85 beta coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 47 条
[1]   Total internal reflection fluorescence microscopy in cell biology [J].
Axelrod, D .
TRAFFIC, 2001, 2 (11) :764-774
[2]   Rapid vesicular translocation and insertion of TRP channels [J].
Bezzerides, VJ ;
Ramsey, IS ;
Kotecha, S ;
Greka, A ;
Clapham, DE .
NATURE CELL BIOLOGY, 2004, 6 (08) :709-720
[3]   Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) [J].
Bhave, G ;
Hu, HJ ;
Glauner, KS ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) :12480-12485
[4]   Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice [J].
Bölcskei, K ;
Helyes, Z ;
Szabó, A ;
Sándor, K ;
Elekes, K ;
Németh, J ;
Almási, R ;
Pintér, E ;
Petho, G ;
Szolcsányi, J .
PAIN, 2005, 117 (03) :368-376
[5]   Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor [J].
Bonnington, JK ;
McNaughton, PA .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (02) :433-446
[6]   Retrograde transport of neurotrophins: Fact and function [J].
Campenot, RB ;
MacInnis, BL .
JOURNAL OF NEUROBIOLOGY, 2004, 58 (02) :217-229
[7]   The vanilloid receptor: A molecular gateway to the pain pathway [J].
Caterina, MJ ;
Julius, D .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :487-517
[8]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[9]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[10]   Ion channels gated by heat [J].
Cesare, P ;
Moriondo, A ;
Vellani, V ;
McNaughton, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :7658-7663