An algebraic approach to decoupling in linear multivariable systems

被引:22
作者
Gómez, GI
Goodwin, GC
机构
[1] Catholic Univ Louvain, Ctr Syst Engn & Appl Mech, B-1348 Louvain, Belgium
[2] Univ Newcastle, Dept Elect & Comp Engn, Ctr Integrated Dynam Control, Callaghan, NSW 2308, Australia
关键词
D O I
10.1080/002071700219434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the problem of decoupling designs for linear multivariable systems. Both partial and diagonal decoupling designs are considered. The development is based on an algebraic approach and the use of coprime factorizations, which provide a mechanism to account for key system properties including internal stability and decoupling invariants. The results obtained include necessary and sufficient conditions for decoupling and a parametrization of all decoupling controllers.
引用
收藏
页码:582 / 599
页数:18
相关论文
共 26 条
[1]   ON MULTIVARIABLE POLE-ZERO CANCELLATIONS AND THE STABILITY OF FEEDBACK-SYSTEMS [J].
ANDERSON, BDO ;
GEVERS, MR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (08) :830-833
[2]  
[Anonymous], 1994, OBTAININGSMOOTHSOLUT
[3]   DECOUPLING LINEAR MULTIINPUT MULTIOUTPUT PLANTS BY DYNAMIC OUTPUT-FEEDBACK - AN ALGEBRAIC-THEORY [J].
DESOER, CA ;
GUNDES, AN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (08) :744-750
[4]   THE MINIMAL DELAY DECOUPLING PROBLEM - FEEDBACK IMPLEMENTATION WITH STABILITY [J].
DION, JM ;
COMMAULT, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (01) :66-82
[5]   Integral constraints on sensitivity vectors for multivariable linear systems [J].
Gomez, GI ;
Goodwin, GC .
AUTOMATICA, 1996, 32 (04) :499-518
[6]  
Gomez GI, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P4095, DOI 10.1109/CDC.1995.479249
[7]  
GOMEZ GI, 1997, THESIS U NEWCASTLE A
[8]   A state-space technique for the evaluation of diagonalizing compensators [J].
Goodwin, GC ;
Feuer, A ;
Gomez, GI .
SYSTEMS & CONTROL LETTERS, 1997, 32 (03) :173-177
[9]  
GUNDES AN, 1990, PROCEEDINGS OF THE 29TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, P2492, DOI 10.1109/CDC.1990.204075
[10]   DECOUPLING OF LINEAR-SYSTEMS BY DYNAMIC OUTPUT-FEEDBACK [J].
HAMMER, J ;
KHARGONEKAR, PP .
MATHEMATICAL SYSTEMS THEORY, 1984, 17 (02) :135-157