Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide

被引:51
作者
Catchpole, OJ
vonKamp, JC
Grey, JB
机构
[1] Industrial Research Limited, P.O. Box 31-310, Lower Huit
关键词
D O I
10.1021/ie9702237
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determined the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the now rate of squalene required to just saturate cal bon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units NTU from experimental data and literature correlations. NTU's from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.
引用
收藏
页码:4318 / 4324
页数:7
相关论文
共 33 条
[1]   Fluid dynamics and mass transfer in the total capacity range of packed columns up to the flood point [J].
Billet, R ;
Schultes, M .
CHEMICAL ENGINEERING & TECHNOLOGY, 1995, 18 (06) :371-379
[2]  
Billet R., 1993, CHEM ENG TECHNOL, V16, P1, DOI [10.1002/ceat.270160102, DOI 10.1002/CEAT.270160102]
[3]   Influence of interfacial tension and viscosity on the behavior of a packed column in near-critical fluid extraction [J].
Blaha-Schnabel, A ;
Beyer, A ;
Czech, B ;
Jakob, H ;
Schiemann, H ;
Weidner, E ;
Peter, S .
CHEMICAL ENGINEERING COMMUNICATIONS, 1996, 146 :13-31
[4]  
BOHM F, 1989, ACS SYM SER, V406, P502
[5]   SQUALENE RECOVERY FROM OLIVE OIL DEODORIZER DISTILLATES [J].
BONDIOLI, P ;
MARIANI, C ;
LANZANI, A ;
FEDELI, E ;
MULLER, A .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1993, 70 (08) :763-766
[6]   LAMPANTE OLIVE OIL REFINING WITH SUPERCRITICAL CARBON-DIOXIDE [J].
BONDIOLI, P ;
MARIANI, C ;
LANZANI, A ;
FEDELI, E ;
MOSSA, A ;
MULLER, A .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1992, 69 (05) :477-480
[7]   ON THE SOLUBILITY OF GLYCERIDES AND FATTY-ACIDS IN COMPRESSED GASES IN THE PRESENCE OF AN ENTRAINER [J].
BRUNNER, G ;
PETER, S .
SEPARATION SCIENCE AND TECHNOLOGY, 1982, 17 (01) :199-214
[8]  
BRUNNER G, 1994, GAS EXTRACTION, pCH1
[9]   MEASUREMENT AND CORRELATION OF BINARY DIFFUSION-COEFFICIENTS IN NEAR-CRITICAL FLUIDS [J].
CATCHPOLE, OJ ;
KING, MB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1994, 33 (07) :1828-1837
[10]  
CATCHPOLE OJ, 1996, P CHEM 96, V1, P65