Integrated Multifunctional Nanosystems for Medical Diagnosis and Treatment

被引:105
作者
Shi, Donglu [1 ,2 ]
机构
[1] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA
[2] Tongji Univ, Inst Adv Mat & Nano Biomed, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
LUMINESCENT CARBON NANOTUBES; ULTRATHIN POLYMER-FILMS; QUANTUM DOTS; IN-VIVO; DRUG-DELIVERY; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; FE3O4; NANOPARTICLES; AL2O3; BREAST-CANCER;
D O I
10.1002/adfm.200901539
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article provides an overview on the development of integrated multifunctional nanosystems for medical diagnosis and treatment. In particular, a novel system is developed specifically for achieving simultaneous diagnosis and treatment of cancer. Critical issues are addressed on the architecture and assembly of nanocomponents based on medical requirements: targeted in vivo imaging, controlled drug release, localized hyperthermia, and toxicity. Nanotube-based carriers are summarized with surface functionalized properties. Other types of nanocarriers are also included such as super paramagnetic composite nanospheres and biodegradable hydroxylapatite nanoparticles. In addition, polymeric-based nanosystems are introduced with several novel features: they can be bio-dissolved due to environmental pH and temperature fluctuations. The nanocarriers are surface tailored with key functionalities: surface antibodies for cell targeting, anti-cancer drug loading, and magnetic nanoparticles for both hyperthermia and MRI. Future requirements, aims, and trends in the development of multifunctional nanosystems, particularly with intelligent functionalities for fundamental studies, are also provided.
引用
收藏
页码:3356 / 3373
页数:18
相关论文
共 147 条
[1]   Nanocrystal targeting in vivo [J].
Åkerman, ME ;
Chan, WCW ;
Laakkonen, P ;
Bhatia, SN ;
Ruoslahti, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12617-12621
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[4]   Synthesis and characterization of carbon nanotube-nanocrystal heterostructures [J].
Banerjee, S ;
Wong, SS .
NANO LETTERS, 2002, 2 (03) :195-200
[5]   Near-infrared optical sensors based on single-walled carbon nanotubes [J].
Barone, PW ;
Baik, S ;
Heller, DA ;
Strano, MS .
NATURE MATERIALS, 2005, 4 (01) :86-U16
[6]   Observation of dipolar emission patterns from isolated Eu3+:Y2O3 doped nanocrystals:: new evidence for single ion luminescence [J].
Bartko, AP ;
Peyser, LA ;
Dickson, RM ;
Mehta, A ;
Thundat, T ;
Bhargava, R ;
Barnes, MD .
CHEMICAL PHYSICS LETTERS, 2002, 358 (5-6) :459-465
[7]   Stimuli-responsive polypeptide vesicles by conformation-specific assembly [J].
Bellomo, EG ;
Wyrsta, MD ;
Pakstis, L ;
Pochan, DJ ;
Deming, TJ .
NATURE MATERIALS, 2004, 3 (04) :244-248
[8]   Functionalisation of magnetic nanoparticles for applications in biomedicine [J].
Berry, CC ;
Curtis, ASG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) :R198-R206
[9]   Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution [J].
Bhargava, Prachur ;
Tu, Yingfeng ;
Zheng, Joseph X. ;
Xiong, Huiming ;
Quirk, Roderic P. ;
Cheng, Stephen Z. D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (05) :1113-1121
[10]   Biopolymer-hydroxyapatite by electrospinning [J].
Bishop, Aisha ;
Balazsi, Csaba ;
Yang, Jason H. C. ;
Gouma, Pelagia-Irene .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (11-12) :902-906