Organic matter in the Peruvian headwaters of the Amazon: Compositional evolution from the Andes to the lowland Amazon mainstem

被引:94
作者
Aufdenkampe, Anthony K.
Mayorga, Emilio
Hedges, John I.
Llerena, Carlos
Quay, Paul D.
Gudeman, Jack
Krusche, Alex V.
Richey, Jeffrey E.
机构
[1] Stroud Water Res Ctr, Avondale, PA 19311 USA
[2] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
[3] Univ Nacl Agr La Molina, Fac Ciencias Forestales, Lima, Peru
[4] Univ Sao Paulo, Ctr Energia Nucl Agr, Sao Paulo, Brazil
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1016/j.orggeochem.2006.06.003
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We examined the compositions of dissolved, fine and coarse particulate organic matter fractions (DOM, FPOM and CPOM, respectively) from 18 river sites in Peru along a 2000 km transect ranging from diverse Andean headwater environments, to depositional reaches, to the confluence of major lowland rivers that. form the Rio Amazonas proper. The objective of the study was to evaluate the extent to which compositions of the three primary OM fractions evolve downstream, with the overall goal of assessing the relative effects of various processes in the dynamics of OM within a large river system. Composition was assessed by concentration, elemental (%OC, %N, C/N), isotopic (C-13, N-15), hydrolysable amino acid, lignin phenol and mineral surface area analyses. Similar to previous results from the lower Amazon and from Bolivian tributaries, CPOM, FPOM and DOM showed distinct compositional differences from one another. However, compositions of OM size fractions at Andean sites were substantially different from lowland sites, with a clear downstream evolution in most OM properties toward typical lowland Amazon values. Andean FPOM and CPOM both had very high %OC and amino acid content, and low C/N typical of lowland FPOM. Andean UDOM showed low %OC, low C/N, high %TAAC and low non-protein amino acid content - also typical of lowland FPOM. These properties have been shown to be affected by selective partitioning onto minerals [Aufdenkampe, A.K., Hedges, J.I., Richey, J.E., Krusche, AN., Llerena, C.A., 2001. Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnology and Oceanography 46 (8), 1921-1935]. In contrast, lignin phenol acid to aldehyde ratios ((Ad/Al)(v)), indicators of diagenesis, were invariant and within typical lowland values over the entire transect. Thus, we propose that differences in the extent of organo-mineral association are the most plausible explanation for these trends. In the Andes, sand-sized particles appear to be stable aggregates of fine omano-mineral complexes and Andean DOM appears to be complexed with ultra-fine inorganic colloids. Therefore, unlike in previous studies, size was not always a good proxy for the degree of mineral association. However, it appears that selective partitioning of organic carbon and nitrogen molecules may be a dominant process in controlling OM composition in these rivers. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:337 / 364
页数:28
相关论文
共 61 条
[1]   Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation [J].
Aalto, R ;
Maurice-Bourgoin, L ;
Dunne, T ;
Montgomery, DR ;
Nittrouer, CA ;
Guyot, JL .
NATURE, 2003, 425 (6957) :493-497
[2]   Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate [J].
Amelung, W ;
Zech, W ;
Zhang, X ;
Follett, RF ;
Tiessen, H ;
Knox, E ;
Flach, KW .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1998, 62 (01) :172-181
[3]   Bacterial utilization of different size classes of dissolved organic matter [J].
Amon, RMW ;
Benner, R .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) :41-51
[4]  
[Anonymous], SSSA BOOK SER
[5]   Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin [J].
Aufdenkampe, AK ;
Hedges, JI ;
Richey, JE ;
Krusche, AV ;
Llerena, CA .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (08) :1921-1935
[6]   Role of the soil matrix and minerals in protecting natural organic materials against biological attack [J].
Baldock, JA ;
Skjemstad, JO .
ORGANIC GEOCHEMISTRY, 2000, 31 (7-8) :697-710
[7]   DIAGENESIS OF BELOWGROUND BIOMASS OF SPARTINA-ALTERNIFLORA IN SALT-MARSH SEDIMENTS [J].
BENNER, R ;
FOGEL, ML ;
SPRAGUE, EK .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (07) :1358-1374
[8]   Bacterial carbon metabolism in the Amazon River system [J].
Benner, R ;
Opsahl, S ;
ChinLeo, G ;
Richey, JE ;
Forsberg, BR .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (07) :1262-1270
[9]  
BENNER R, 1991, GEOPH MONOG SERIES, V63, P181
[10]   EFFECT OF ALTITUDE ON THE CARBON-ISOTOPE COMPOSITION OF FOREST AND GRASSLAND SOILS FROM PAPUA-NEW-GUINEA [J].
BIRD, MI ;
HABERLE, SG ;
CHIVAS, AR .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (01) :13-22