On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval

被引:12
作者
Chiavassa, G
Liandrat, J
机构
[1] UNIV AIX MARSEILLE 2,IRPHE,IMT,F-13451 MARSEILLE 20,FRANCE
[2] UNIV AIX MARSEILLE 2,ESM2,IMT,F-13451 MARSEILLE 20,FRANCE
关键词
D O I
10.1006/acha.1996.0203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval [0,1]. The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H-0(1)([0,1]) is detailed and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions. (C) 1997 Academic Press.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]   COMPACTLY SUPPORTED WAVELETS AND BOUNDARY-CONDITIONS [J].
AUSCHER, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :29-43
[3]  
BERTOLUZZA S, 1994, PUBBL 1 ANAL NUMER P, V908
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]  
BEYLKIN G, 1995, WAVELETS MATH APPL, P449
[6]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[7]  
CHUI C, 1992, WAVELETS TUTORIAL TH, V2, P217
[8]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]  
FIX G, 1969, STUD APPL MATH, V48, P265