Inner deflation for symmetric tridiagonal matrices

被引:4
作者
Dhillon, IS
Malyshev, AN [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
关键词
eigenvector; symmetric tridiagonal matrix; deflation; inverse iteration;
D O I
10.1016/S0024-3795(01)00479-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that one knows an accurate approximation to an eigenvalue of a real symmetric tridiagonal matrix. A variant of deflation by the Givens rotations is proposed in order to split off the approximated eigenvalue. Such a deflation can be used instead of inverse iteration to compute the corresponding eigenvector. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 1993, GUARANTEED ACCURACY
[2]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[3]  
Dhillon I. S., 1997, THESIS U CALIFORNIA
[4]   On computing an eigenvector of a tridiagonal matrix .1. Basic results [J].
Fernando, KV .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) :1013-1034
[5]  
GODUNOV SK, 1983, 44 SIB BRANCH USSR A, P58
[6]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE
[7]   THE CALCULATION OF THE ENGENVECTORS OF CODIAGONAL MATRICES [J].
WILKINSON, JH .
COMPUTER JOURNAL, 1958, 1 (02) :90-96