Assessing differential gene expression with small sample sizes in oligonucleotide arrays using a mean-variance model

被引:18
作者
Hu, Jianhua [1 ]
Wright, Fred A.
机构
[1] Univ Texas, Dept Biostat & Appl Math, MD Anderson Canc Ctr, Houston, TX 77030 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
关键词
differential gene expression; false discovery rate; integrated likelihood; mean-variance model; overdispersion;
D O I
10.1111/j.1541-0420.2006.00675.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of the genes that are differentially expressed in two-sample luicroarray experiments remains a difficult problem when the number of arrays is very small. We discuss the implications of using ordinary t-statistics and examine other commonly used variants. For oligonucleotide arrays with multiple probes per gene, we introduce a simple model relating the mean and variance of expression, possibly with gene-specific random effects. Parameter estimates from the model have natural shrinkage properties that guard against inappropriately small variance estimates, and the model is used to obtain a differential expression statistic. A limiting value to the positive false discovery rate (pFDR) for ordinary t-tests provides motivation for our use. of the data structure to improve variance estimates. Our approach performs-well compared to other proposed approaches in terms of' the false discovery rate.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 1989, Applied Linear Regression Models
[2]   Identifying differentially expressed genes in cDNA microarray experiments [J].
Baggerly, KA ;
Coombes, KR ;
Hess, KR ;
Stivers, DN ;
Abruzzo, LV ;
Zhang, W .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (06) :639-659
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells [J].
Bro, C ;
Regenberg, B ;
Lagniel, G ;
Labarre, J ;
Montero-Lomelí, M ;
Nielsen, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (34) :32141-32149
[5]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[6]  
Dudoit S, 2002, STAT SINICA, V12, P111
[7]   Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: The NOD model of type 1 diabetes [J].
Eaves, IA ;
Wicker, LS ;
Ghandour, G ;
Lyons, PA ;
Peterson, LB ;
Todd, JA ;
Glynne, RJ .
GENOME RESEARCH, 2002, 12 (02) :232-243
[8]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[9]   Transformation and normalization of oligonucleotide microarray data [J].
Geller, SC ;
Gregg, JP ;
Hagerman, P ;
Rocke, DM .
BIOINFORMATICS, 2003, 19 (14) :1817-1823
[10]  
GENOVESE C, 2003, BAYESIAN STAT, V7, P145