Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9

被引:32
作者
Montefiori, Lindsey [1 ]
Hernandez, Liana [1 ]
Zhang, Zijie [1 ]
Gilad, Yoav [1 ]
Ober, Carole [1 ]
Crawford, Gregory [2 ]
Nobrega, Marcelo [1 ]
Sakabe, Noboru Jo [1 ]
机构
[1] Univ Chicago, Dept Human Genet, 920 E 58th St Room 515, Chicago, IL 60637 USA
[2] Duke Univ, Dept Pediat, Ctr Genom & Computat Biol, Durham, NC 27708 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
CHROMATIN;
D O I
10.1038/s41598-017-02547-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ATAC-seq is a high-throughput sequencing technique that identifies open chromatin. Depending on the cell type, ATAC-seq samples may contain similar to 20-80% of mitochondrial sequencing reads. As the regions of open chromatin of interest are usually located in the nuclear genome, mitochondrial reads are typically discarded from the analysis. We tested two approaches to decrease wasted sequencing in ATAC-seq libraries generated from lymphoblastoid cell lines: targeted cleavage of mitochondrial DNA fragments using CRISPR technology and removal of detergent from the cell lysis buffer. We analyzed the effects of these treatments on the number of usable (unique, non-mitochondrial) reads and the number and quality of peaks called, including peaks identified in enhancers and transcription start sites. Both treatments resulted in considerable reduction of mitochondrial reads (1.7 and 3-fold, respectively). The removal of detergent, however, resulted in increased background and fewer peaks. The highest number of peaks and highest quality data was obtained by preparing samples with the original ATAC-seq protocol (using detergent) and treating them with CRISPR. This strategy reduced the amount of sequencing required to call a high number of peaks, which could lead to cost reduction when performing ATAC-seq on large numbers of samples and in cell types that contain a large amount of mitochondria.
引用
收藏
页数:9
相关论文
共 16 条
[1]  
Buenrostro Jason D, 2015, Curr Protoc Mol Biol, V109, DOI 10.1002/0471142727.mb2129s109
[2]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[3]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[4]   Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution [J].
Corces, M. Ryan ;
Buenrostro, Jason D. ;
Wu, Beijing ;
Greenside, Peyton G. ;
Chan, Steven M. ;
Koenig, Julie L. ;
Snyder, Michael P. ;
Pritchard, Jonathan K. ;
Kundaje, Anshul ;
Gkeenleaf, William J. ;
Majeti, Ravindra ;
Chang, Howard Y. .
NATURE GENETICS, 2016, 48 (10) :1193-1203
[5]   Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications [J].
Gu, W. ;
Crawford, E. D. ;
O'Donovan, B. D. ;
Wilson, M. R. ;
Chow, E. D. ;
Retallack, H. ;
DeRisi, J. L. .
GENOME BIOLOGY, 2016, 17
[6]   GENCODE: The reference human genome annotation for The ENCODE Project [J].
Harrow, Jennifer ;
Frankish, Adam ;
Gonzalez, Jose M. ;
Tapanari, Electra ;
Diekhans, Mark ;
Kokocinski, Felix ;
Aken, Bronwen L. ;
Barrell, Daniel ;
Zadissa, Amonida ;
Searle, Stephen ;
Barnes, If ;
Bignell, Alexandra ;
Boychenko, Veronika ;
Hunt, Toby ;
Kay, Mike ;
Mukherjee, Gaurab ;
Rajan, Jeena ;
Despacio-Reyes, Gloria ;
Saunders, Gary ;
Steward, Charles ;
Harte, Rachel ;
Lin, Michael ;
Howald, Cedric ;
Tanzer, Andrea ;
Derrien, Thomas ;
Chrast, Jacqueline ;
Walters, Nathalie ;
Balasubramanian, Suganthi ;
Pei, Baikang ;
Tress, Michael ;
Manuel Rodriguez, Jose ;
Ezkurdia, Iakes ;
van Baren, Jeltje ;
Brent, Michael ;
Haussler, David ;
Kellis, Manolis ;
Valencia, Alfonso ;
Reymond, Alexandre ;
Gerstein, Mark ;
Guigo, Roderic ;
Hubbard, Tim J. .
GENOME RESEARCH, 2012, 22 (09) :1760-1774
[7]   Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities [J].
Heinz, Sven ;
Benner, Christopher ;
Spann, Nathanael ;
Bertolino, Eric ;
Lin, Yin C. ;
Laslo, Peter ;
Cheng, Jason X. ;
Murre, Cornelis ;
Singh, Harinder ;
Glass, Christopher K. .
MOLECULAR CELL, 2010, 38 (04) :576-589
[8]   Integrative analysis of 111 reference human epigenomes [J].
Kundaje, Anshul ;
Meuleman, Wouter ;
Ernst, Jason ;
Bilenky, Misha ;
Yen, Angela ;
Heravi-Moussavi, Alireza ;
Kheradpour, Pouya ;
Zhang, Zhizhuo ;
Wang, Jianrong ;
Ziller, Michael J. ;
Amin, Viren ;
Whitaker, John W. ;
Schultz, Matthew D. ;
Ward, Lucas D. ;
Sarkar, Abhishek ;
Quon, Gerald ;
Sandstrom, Richard S. ;
Eaton, Matthew L. ;
Wu, Yi-Chieh ;
Pfenning, Andreas R. ;
Wang, Xinchen ;
Claussnitzer, Melina ;
Liu, Yaping ;
Coarfa, Cristian ;
Harris, R. Alan ;
Shoresh, Noam ;
Epstein, Charles B. ;
Gjoneska, Elizabeta ;
Leung, Danny ;
Xie, Wei ;
Hawkins, R. David ;
Lister, Ryan ;
Hong, Chibo ;
Gascard, Philippe ;
Mungall, Andrew J. ;
Moore, Richard ;
Chuah, Eric ;
Tam, Angela ;
Canfield, Theresa K. ;
Hansen, R. Scott ;
Kaul, Rajinder ;
Sabo, Peter J. ;
Bansal, Mukul S. ;
Carles, Annaick ;
Dixon, Jesse R. ;
Farh, Kai-How ;
Feizi, Soheil ;
Karlic, Rosa ;
Kim, Ah-Ram ;
Kulkarni, Ashwinikumar .
NATURE, 2015, 518 (7539) :317-330
[9]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
[10]   Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery [J].
Lin, Steven ;
Staahl, Brett ;
Alla, Ravi K. ;
Doudna, Jennifer A. .
ELIFE, 2014, 3 :e04766